High-resolution thermal imaging with a combination of nano-focus X-ray diffraction and ultra-fast chip calorimetry

Journal of Synchrotron Radiation - Tập 21 Số 1 - Trang 223-228 - 2014
Martin Rosenthal1, David Doblas2,3, Jaime J. Hernández3, Yaroslav Odarchenko3, Manfred Burghammer4, Emanuela Di Cola4, Denis Spitzer2, Andrey E. Antipov1, L. S. Aldoshin1, Dimitri A. Ivanov1,3
1Faculty of Fundamental Physical and Chemical Engineering, Moscow State University, Moscow 119991, Russian Federation
2Institut Franco–Allemand de Recherches de Saint-Louis, Laboratoire des Nanomatériaux pour les Systèmes Sous Sollicitations Extrêmes, UMR3208, ISL/CNRS, 5 Rue du Général Cassagnou, Saint-Louis 68301, France
3Institut de Sciences des Matériaux de Mulhouse, CNRS UMR7361, CNRS, 15 rue Jean Starcky, Mulhouse 68057, France
4European Synchrotron Radiation Facility, 6 rue Jules Horowitz, Grenoble 38043, France

Tóm tắt

A microelectromechanical-systems-based calorimeter designed for use on a synchrotron nano-focused X-ray beamline is described. This instrument allows quantitative DC and AC calorimetric measurements over a broad range of heating/cooling rates (≤100000 K s−1) and temperature modulation frequencies (≤1 kHz). The calorimeter was used for high-resolution thermal imaging of nanogram-sized samples subjected to X-ray-induced heating. For a 46 ng indium particle, the measured temperature rise reaches ∼0.2 K, and is directly correlated to the X-ray absorption. Thermal imaging can be useful for studies of heterogeneous materials exhibiting physical and/or chemical transformations. Moreover, the technique can be extended to three-dimensional thermal nanotomography.

Từ khóa


Tài liệu tham khảo

Allen, 1994, Appl. Phys. Lett., 64, 417, 10.1063/1.111116

Beard, 1991, Propel. Explos. Pyrotech., 16, 81, 10.1002/prep.19910160208

Boye, 2009, J. Phys. Conf. Ser., 186, 012063, 10.1088/1742-6596/186/1/012063

Jiang, 2002, Thermochim. Acta, 387, 75, 10.1016/S0040-6031(01)00829-2

Kraftmakher, 2002, Phys. Rep., 356, 1, 10.1016/S0370-1573(01)00031-X

McCammon, 1984, J. Appl. Phys., 56, 1263, 10.1063/1.334130

Merzlyakov, 2006, Thermochim. Acta, 442, 52, 10.1016/j.tca.2005.11.018

Minakov, 2005, Thermochim. Acta, 432, 177, 10.1016/j.tca.2005.01.073

Minakov, 2005, Rev. Sci. Instrum., 76, 043906, 10.1063/1.1889432

Minakov, 2007, Rev. Sci. Instrum., 78, 073902, 10.1063/1.2751411

Piazzon, N. (2010). PhD thesis, Université de Haute Alsace, Mulhouse, France.

Piazzon, 2010, J. Phys. Chem. Solids, 71, 114, 10.1016/j.jpcs.2009.07.032

Rosenthal, 2011, Angew. Chem. Int. Ed., 50, 8881, 10.1002/anie.201102814

Rosenthal, 2012, Macromolecules, 45, 7454, 10.1021/ma301446t

Snell, 2007, J. Synchrotron Rad., 14, 109, 10.1107/S090904950604605X

Vinko, 2012, Nature (London), 482, 59, 10.1038/nature10746