Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mô hình hình dạng có độ phân giải cao của Phobos và Deimos từ phép đo hình ảnh 3D
Tóm tắt
Chúng tôi đã tạo ra các mô hình hình dạng có độ phân giải cao của Phobos và Deimos bằng cách sử dụng phép đo hình ảnh ba chiều (stereophotoclinometry) và kết hợp hình ảnh từ Viking Orbiter, Phobos 2, Mars Global Surveyor, Mars Express, và Mars Reconnaissance Orbiter thành một tập hợp hình ảnh đã được điều chỉnh đồng bộ. Elipsoid phù hợp nhất với mô hình Phobos có bán kính là (12.95 ± 0.04) km × (11.30 ± 0.04) km × (9.16 ± 0.03) km, với bán kính trung bình là (11.08 ± 0.04) km. Elipsoid phù hợp nhất với mô hình Deimos có bán kính là (8.04 ± 0.08) km × (5.89 ± 0.06) km × (5.11 ± 0.05) km với bán kính trung bình là (6.27 ± 0.07) km. Các mô hình hình dạng mới cung cấp cải tiến đáng kể về độ phân giải so với các mô hình hình dạng hiện có, trong khi vẫn giữ được sự nhất quán toàn cầu với chúng. Mô hình Phobos có khả năng phân giải các rãnh, hố va chạm, và các đặc điểm bề mặt khác có kích thước ~ 100 m trên toàn bộ bề mặt. Mô hình Deimos là lần đầu tiên phân giải được các đặc điểm địa chất bề mặt. Các mô hình này, các sản phẩm dữ liệu liên quan, và một tập hợp hình ảnh đã được điều chỉnh đồng bộ và có thể tìm kiếm từ sáu tàu vũ trụ hiện có sẵn công khai trong Công cụ Lập bản đồ Thiên thể Nhỏ và sẽ được lưu trữ trong Hệ thống Dữ liệu Hành tinh của NASA. Những sản phẩm này cho phép một loạt các nghiên cứu tương lai nhằm nâng cao hiểu biết về Phobos và Deimos, tạo điều kiện cho việc điều chỉnh đồng bộ dữ liệu trong quá khứ và tương lai khác, và tạo nền tảng cho việc lập kế hoạch và hoạt động cho các nhiệm vụ tương lai đến các mặt trăng, bao gồm nhiệm vụ Khám Phá Mặt Trăng Hành Tinh (MMX) sắp tới.
Từ khóa
Tài liệu tham khảo
Arakawa M, Saiki T, Wada K et al (2020) An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime. Science 368:67–71. https://doi.org/10.1126/science.aaz1701
Archinal BA, A’Hearn MF, Bowell E et al (2011) Report of the IAU working group on cartographic coordinates and rotational elements: 2009. Celest Mech Dyn Astron 109:101–135. https://doi.org/10.1007/s10569-010-9320-4
Archinal BA, Acton C, A’Hearn MF et al (2018) Report of the IAU working group on cartographic coordinates and rotational elements: 2015. Celest Mech Dyn Astron 130:22. https://doi.org/10.1007/s10569-017-9805-5
Archinal BA, Acton C, Conrad A et al (2019) Erratum: correction to: report of the IAU working group on cartographic coordinates and rotational elements: 2015. Celest Mech Dyn Astron 131:61. https://doi.org/10.1007/s10569-019-9925-1
Al Asad MM, Philpott LC, Johnson CL et al (2021) Validation of Stereophotoclinometric shape models of asteroid (101955) Bennu during the OSIRIS-REx Mission. Planet Sci J 2:82. https://doi.org/10.3847/PSJ/abe4dc
Bachman N (2011) P_constants (PcK) SPICE kernel file pck00010.tpc. https://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/pck00010.tpc
Bachman N (2022) P_constants (PCK) SPICE kernel file pck00011_n0066.tpc. https://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/pck00011_n0066.tpc
Banerdt WB, Neumann GA (1999) The Topography (and Ephemeris) of Phobos from MOLA Ranging. Lunar and Planetary Science Conference 30, #2021
Ballouz R-L, Baresi N, Crites ST, Kawakatsu Y, Fujimoto M (2019) Surface refreshing of Martian moon Phobos by orbital eccentricity-driven grain motion. Nat Geosci 12:229–234. https://doi.org/10.1038/s41561-019-0323-9
Barnouin OS, Daly MG, Palmer EE et al (2019) Shape of (101955) Bennu indicative of a rubble pile with internal stiffness. Nat Geosci 12:247–252. https://doi.org/10.1038/s41561-019-0330-x
Barnouin OS, Daly MG, Palmer EE et al (2020) Digital terrain mapping by the OSIRIS-REx mission. Planetary Space Sci 180:104764. https://doi.org/10.1016/j.pss.2019.104764
Burmeister S, Willner K, Schmidt V, Oberst J (2018) Determination of Phobos’ rotational parameters by an inertial frame bundle block adjustment. J Geodesy 92:963–973. https://doi.org/10.1007/s00190-018-1112-8
Chabot NL, Peplowski PN, Ernst CM et al (2021) MEGANE investigations of Phobos and the Small Body Mapping Tool. Earth Planets Space 73:217
Craft KL, Barnouin OS, Gaskell R et al (2020) Assessing stereophotoclinometry by modeling a physical wall representing asteroid Bennu. Planetary Space Sci 193:105077. https://doi.org/10.1016/j.pss.2020.105077
Daly RT, Ernst CM, Gaskell RW, et al (2018) New stereophotoclinometry shape models for irregularly shaped saturnian satellites. Lunar and Planetary Science Conference 49, #1053
Daly RT, Bierhaus EB, Barnouin OS et al (2020) The Morphometry of Impact Craters on Bennu. Geophys Res Lett 47:e2020JE006475-10. https://doi.org/10.1029/2020GL089672
Duxbury TC (1978) Spacecraft imaging of Phobos and Deimos. Vistas in Astronomy 22:149–161. https://doi.org/10.1016/0083-6656(78)90013-2
Ernst CM, Barnouin OS, Daly RT, SBMT Team (2018) The small body mapping Tool (SBMT) for accessing, visualizing, and analyzing spacecraft data in three dimensions. Lunar and Planetary Science Conference 49, #1043
Ernst CM, Gaskell RW, Daly RT, Barnouin, OS, Thomas, PC (2019) A Stereophotoclinometry Model of Comet Tempel 1. Lunar and Planetary Science Conference 50, #2640
Gaskell RW (1988) Digital identification of cartographic control points. Photogr Eng Remote Sens 54:723–727
Gaskell RW (2006) Landmark navigation and target characterization in a simulated Itokawa encounter. Adv Astronautical Sci 123:629–644
Gaskell RW (2008) Gaskell Eros Shape Model V1.0. NEAR-A-MSI-5-EROSSHAPE-V1.0. NASA Planetary Data System
Gaskell RW (2011) Phobos Shape Model V1.0. VO1-SA-VISA/VISB-5-PHOBOSSHAPE-V1.0. NASA Planetary Data System
Gaskell RW (2013a) Final Claudia Model http://dawndata.igpp.ucla.edu/tw.jsp?section=geometry/ShapeModels/GASKELL_CLAUDIA_2013a_02_13
Gaskell RW (2013b) Gaskell Tethys Shape Model V1.0. CO-SA-ISSNA-5-TETHYSSHAPE-V1.0. NASA Planetary Data System
Gaskell RW (2013c) Gaskell Mimas Shape Model V2.0. CO-SA-ISSNA-5-MIMASSHAPE-V2.0. NASA Planetary Data System
Gaskell RW (2013d) Gaskell Dione Shape Model V1.0. CO-SA-ISSNA/ISSWA-5-DIONESHAPE-V1.0. NASA Planetary Data System
Gaskell RW (2013e) Gaskell Phoebe Shape Model V2.0, CO-SA-ISSNA-5-PHOEBESHAPE-V2.0. NASA Planetary Data System
Gaskell R, Saito J, Ishiguro M, et al (2008a) Gaskell Itokawa Shape Model V1.0. HAY-A-AMICA-5-ITOKAWASHAPE-V1.0. NASA Planetary Data System
Gaskell RW, Barnouin-Jha OS, Scheeres DJ et al (2008b) Characterizing and navigating small bodies with imaging data. Meteorit Planet Sci 43:1049–1061. https://doi.org/10.1111/j.1945-5100.2008.tb00692.x
Gaskell R, Mastrodemos N, Hayward R, Rosiek M (2011) SPC Topography from Clementine Images. Lunar and Planetary Science Conference 42, #2535
Gaskell RW, Barnouin O, Daly MG et al (2023) Stereophotoclinometry on the OSIRIS-REx Mission: mathematics and Methods. Planet Sci J. 4:63 https://doi.org/10.3847/PSJ/acc4b9
Jacobson RA (2010) The orbits and masses of the martian satellites and the libration of phobos. Astron J 139:668–679. https://doi.org/10.1088/0004-6256/139/2/668
Jaumann R, Neukum G, Behnke T, et al (2007) The high-resolution stereo camera (HRSC) experiment on Mars Express: Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planetary Space Sci 55:928–952. https://doi.org/10.1016/j.pss.2006.12.003
Jacobson RA, Konopliv AS, Park RS, Folkner WM (2018) The rotational elements of Mars and its satellites. Planet Space Sci 152:107–115. https://doi.org/10.1016/j.pss.2017.12.020
Jorda L, Gaskell R, Capanna C et al (2016) The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations. Icarus 277:257–278. https://doi.org/10.1016/j.icarus.2016.05.002
Jorda L, Lamy PL, Gaskell RW et al (2012) Asteroid (2867) Steins: shape, topography and global physical properties from OSIRIS observations. Icarus 221:1089–1100. https://doi.org/10.1016/j.icarus.2012.07.035
Kameda S, Kato H, Osada N, et al (2019) Telescopic Camera (TENGOO) and Wide-Angle Multiband Camera (OROCHI) Onboard Martian Moons eXploration (MMX) Spacecraft. Lunar and Planetary Science Conference 50, #2292
Kuramoto K, Kawakatsu Y, Fujimoto M et al (2022) Martian Moons Exploration MMX: sample return mission to Phobos elucidating formation processes of habitable planets. Earth Planets Space 74:12. https://doi.org/10.1186/s40623-021-01545-7
Lauretta DS, Adam CD, Allen AJ et al (2022) Spacecraft sample collection and subsurface excavation of asteroid (101955) Bennu. Science 377:285–291. https://doi.org/10.1126/science.abm101
Malin MC, Edgett KS, Cantor BA, et al (2010) International Journal of Mars Science and Exploration, 4:1–60. https://doi.org/10.1555/mars.2010.0001
McEwen AS, Eliason EM, Bergstrom JW, et al (2007) Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J Geophys Res Planets 112:E05S02. https://doi.org/10.1029/2005JE002605
Murchie SL, Thomas N, Britt D, et al (1999) Mars pathfinder spectral measurements of Phobos and Deimos: comparison with previous data. J Geophys Res 104:9069–9079. https://doi.org/10.1029/98JE02248
Murchie SL, Erard S (1996) Spectral Properties and Heterogeneity of Phobos from Measurements by Phobos 2. Icarus 123:63–86. https://doi.org/10.1006/icar.1996.0142
Oberst J, Schwarz G, Behnke T et al (2008) The imaging performance of the SRC on Mars Express. Planet Space Sci 56:473–491. https://doi.org/10.1016/j.pss.2007.09.009
Palmer EE, Gaskell R, Daly MG et al (2022) Practical stereophotoclinometry for modeling shape and topography on planetary missions. Planet Sci J 3:102. https://doi.org/10.3847/PSJ/ac460f
Park RS, Vaughan AT, Konopliv AS et al (2019) High-resolution shape model of Ceres from stereophotoclinometry using Dawn Imaging Data. Icarus 319:812–827. https://doi.org/10.1016/j.icarus.2018.10.024
Pätzold M, Andert TP, Tyler GL et al (2014) Accepted Manuscript. Icarus 229:92–98. https://doi.org/10.1016/j.icarus.2013.10.021
Perry ME, Neumann GA, Phillips RJ et al (2015) The low-degree shape of Mercury. Geophys Res Lett 42:6951–6958. https://doi.org/10.1002/2015GL065101
Roberts JH, Barnouin OS, Kahn EG, Prockter LM (2014a) Observational bias and the apparent distribution of ponds on Eros. Icarus 241:160–164. https://doi.org/10.1016/j.icarus.2014.07.004
Roberts JH, Kahn EG, Barnouin OS et al (2014b) Origin and flatness of ponds on asteroid 433 Eros. Meteorit Planet Sci 49:1735–1748. https://doi.org/10.1111/maps.12348
Sierks H, Lamy P, Barbieri C et al (2011) Images of Asteroid 21 Lutetia: a remnant planetesimal from the early solar system. Science 334:487–490. https://doi.org/10.1126/science.1207325
Stark A, Willner K, Burmeister S, Oberst J (2017) Geodetic Framework for Martian Satellite Exploration I: Reference Rotation Models. European Planetary Science Congress 11, EPSC2017–868–1
Thomas PC (1993) Gravity, tides, and topography on small satellites and asteroids—application to surface features of the Martian satellites. Icarus 105:326. https://doi.org/10.1006/icar.1993.1130
Thomas PC, Carcich B, Veverka J, et al (2000) Small body shape models V2.1. EAR-A-5-DDR-SHAPE-MODELS-V2.1. NASA Planetary Data System
Thomas N, Stelter R, Ivanov A, et al (2011) Spectral heterogeneity on Phobos and Deimos: hiRISE observations and comparisons to Mars Pathfinder results. Planetary Space Sci 59:1281–1292. https://doi.org/10.1016/j.pss.2010.04.018
Tsuda Y, Saiki T, Fuyuto T et al (2020) Hayabusa2 mission status: landing, roving and cratering on asteroid Ryugu. Acta Astronaut 171:42–54. https://doi.org/10.1016/j.actaastro.2020.02.035
Veverka J (1978) The surfaces of phobos and deimos. Vistas in Astronomy 22:163–192. https://doi.org/10.1016/0083-6656(78)90014-4
Wang Y, Wu X (2020) Analysis of Phobos’ dynamical environment considering effects of ephemerides and physical libration. Mon Not R Astron Soc 497:416–434. https://doi.org/10.1093/mnras/staa1948
Watanabe S, Hirabayashi M, Hirata N et al (2019) Hayabusa2 arrives at the carbonaceous asteroid 162173 ryugu—a spinning top–shaped rubble pile. Science 364:268–272. https://doi.org/10.1126/science.aav8032
Wählisch M, Willner K, Oberst J et al (2010) A new topographic image atlas of Phobos. Earth and Planetary Science Letters 294:547–553. https://doi.org/10.1016/j.epsl.2009.11.003
Weirich JR, Palmer EE, Domingue DL (2019) Digital Terrain Models of Mathilde and the Moon. Lunar and Planetary Science Conference 50, #2681
Weirich JR, Palmer EE, Daly MG et al (2022) Quality assessment of stereophotoclinometry as a shape modeling method using a synthetic asteroid. Planet Sci J 3:103. https://doi.org/10.3847/PSJ/ac46d2
Werner RA, Scheeres DJ (1997) Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celestial Mech Dyn Astr 65:313–344. https://doi.org/10.1007/BF00053511
Wellman JB, Landauer FP, Norris DD, Thorpe TE (1976) The viking orbiter visual imaging subsystem. Journal of Spacecraft and Rockets 13:660–666. https://doi.org/10.2514/3.57128
Willner K, Shi X, Oberst J (2014) Phobos’ shape and topography models. Planet Space Sci 102:51–59. https://doi.org/10.1016/j.pss.2013.12.006
Witasse O, Duxbury T, Chicarro A, et al (2014) Mars express investigations of phobos and deimos. Planetary and Space Science 102:18–34. https://doi.org/10.1016/j.pss.2013.08.002