High-resolution mapping of vehicle emissions of atmospheric pollutants based on large-scale, real-world traffic datasets

Copernicus GmbH - Tập 19 Số 13 - Trang 8831-8843
Daoyuan Yang1, Shaojun Zhang1,2, Tianlin Niu3,1, Yunjie Wang1, Honglei Xu4, K. Max Zhang2, Ye Wu1,5
1School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, PR China
2Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
3Ricardo Energy & Environment, Beijing 100028, PR China
4Transport Planning and Research Institute, Ministry of Transport, Beijing 100028, PR China
5State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, PR China

Tóm tắt

Abstract. On-road vehicle emissions are a major contributor to elevated air pollution levels in populous metropolitan areas. We developed a link-level emissions inventory of vehicular pollutants, called EMBEV-Link (Link-level Emission factor Model for the BEijing Vehicle fleet), based on multiple datasets extracted from the extensive road traffic monitoring network that covers the entire municipality of Beijing, China (16 400 km2). We employed the EMBEV-Link model under various traffic scenarios to capture the significant variability in vehicle emissions, temporally and spatially, due to the real-world traffic dynamics and the traffic restrictions implemented by the local government. The results revealed high carbon monoxide (CO) and total hydrocarbon (THC) emissions in the urban area (i.e., within the Fifth Ring Road) and during rush hours, both associated with the passenger vehicle traffic. By contrast, considerable fractions of nitrogen oxides (NOx), fine particulate matter (PM2.5) and black carbon (BC) emissions were present beyond the urban area, as heavy-duty trucks (HDTs) were not allowed to drive through the urban area during daytime. The EMBEV-Link model indicates that nonlocal HDTs could account for 29 % and 38 % of estimated total on-road emissions of NOx and PM2.5, which were ignored in previous conventional emission inventories. We further combined the EMBEV-Link emission inventory and a computationally efficient dispersion model, RapidAir®, to simulate vehicular NOx concentrations at fine resolutions (10 m × 10 m in the entire municipality and 1 m × 1 m in the hotspots). The simulated results indicated a close agreement with ground observations and captured sharp concentration gradients from line sources to ambient areas. During the nighttime when the HDT traffic restrictions are lifted, HDTs could be responsible for approximately 10 µg m−3 of NOx in the urban area. The uncertainties of conventional top-down allocation methods, which were widely used to enhance the spatial resolution of vehicle emissions, are also discussed by comparison with the EMBEV-Link emission inventory.

Từ khóa


Tài liệu tham khảo

Anenberg, S. C., Miller, J., Minjares, R., Du, L., Henze, D. K., Lacey, F., Malley, C. S., Emberson, L., Franco, V., Klimont, Z., and Heyes, C.: Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets, Nature, 545, 467–471, https://doi.org/10.1038/nature22086, 2017.

Barth, M. J., Todd, M., and Shaheen, S: Intelligent Transportation Technology Elements and Operational Methodologies for Shared-Use Vehicle Systems, J. Transport. Res. Board, 1841, 99–108, 2003.

Beijing EPB (Beijing Environmental Protection Bureau): The daily average PM2.5 concentrations decreased by 30 % during the APEC Summit, available at: http://politics.people.com.cn/n/2014/1114/c1001-26019842.html (last access: 30 June 2019), 2014 (in Chinese).

Beijing MEEB (Beijing Municipal Ecological Environment Bureau): Beijing Environmental Statement 2017, Beijing Municipal Ecological Environment Bureau, Beijing, P. R. China, available at: http://www.bjepb.gov.cn/bjhrb/xxgk/ywdt/hjzlzk/hjzkgb65/index.html (last access: 30 June 2019), 2018a (in Chinese).

Beijing MEEB (Beijing Municipal Ecological Environment Bureau): Beijing has released the newest source apportionment results of ambient PM2.5 concentrations, available at: http://www.xinhuanet.com/politics/2018-05/15/c_1122832062.htm (last access: 30 June 2019), 2018b (in Chinese).

Beijing Municipal Government: Beijing Municipal Government dispatched more public buses for transportation services during the APEC period, available at: http://travel.163.com/14/1112/09/AARD2B9J00063JSA.html (last access: 30 June 2019), 2014 (in Chinese).

BJTU and Beijing EPB (Beijing Jiaotong University and Beijing Environmental Protection Bureau): Research on the improvement on the decision system of vehicle emission control: research and application of the simulation method of Estimating traffic activities for nonmonitored roads, Beijing EPB, Beijing, P. R. China, 2014 (in Chinese).

Borken-Kleefeld, J. and Dallmann, T.: Remote sensing of motor vehicle exhaust emissions. White Paper, International Council on Clean Transportation, Washington, DC, available at: https://www.theicct.org/sites/default/files/publications/Remote-sensing-emissions_ICCT-White-Paper_01022018_vF_rev.pdf (last access: 30 June 2019), 2018.

BTI (Beijing Transport Institution): Beijing Transportation Annual Report, available at: http://www.bjtrc.org.cn/List/index/cid/7.html (last access: 30 June 2019), 2018 (in Chinese).

Cai, H. and Xu, M.: Greenhouse gas implications of fleet electrification based on big data-informed individual travel patterns, Environ. Sci. Technol., 47, 9035–9043, https://doi.org/10.1021/es401008f, 2013.

Dallmann, T. R., Kirchstetter, T. W., DeMartini, S. J., and Harley, R. A.: Quantifying on-road emissions from gasoline-powered motor vehicles: accounting for the presence of medium- and heavy-duty diesel trucks, Environ. Sci. Technol., 47, 13873–13881, https://doi.org/10.1021/es402875u, 2013.

Gately, C. K., Hutyra, L. R., Peterson, S., and Wing, I. S.: Urban emissions hotspots: Quantifying vehicle congestion and air pollution using mobile phone GPS data, Environ. Pollut., 229, 496–504, https://doi.org/10.1016/j.envpol.2017.05.091, 2017.

Grange, S. K., Farren, N. J., Vaughan, A. R., Rose, R. A., and Carslaw, D. C.: Strong Temperature Dependence for Light-Duty Diesel Vehicle NOx Emissions, Environ. Sci. Technol., 53, 6587–6596, https://doi.org/10.1021/acs.est.9b01024, 2019.

Guo, S., Hu, M., Zamora, M. L., Peng, J. F., Shang, D. J., Zheng, J., Du, Z. F., Wu, Z., Shao, M., Zeng, L. M., Molina, M. J., and Zhang, R. Y.: Elucidating severe urban haze formation in China, P. Natl. Acad. Sci. USA, 111, 17373–17378, https://doi.org/10.1073/pnas.1419604111, 2014.

Hooper, E., Chapman, L., and Quinn, A.: The impact of precipitation on speed–flow relationships along a UK motorway corridor, Theor. Appl. Climatol., 117, 303–316, https://doi.org/10.1007/s00704-013-0999-5, 2013.

Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and Prévôt, A. S. H.: High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218–222, https://doi.org/10.1038/nature13774, 2014.

Huo, H., Zhang, Q., He, K. B., Wang, Q. D., Yao, Z. L., and Streets, D. G.: High-Resolution Vehicular Emission Inventory Using a Link-Based Method: A Case Study of Light-Duty Vehicles in Beijing, Environ. Sci. Technol., 43, 2394–2399, https://doi.org/10.1021/es802757a, 2009.

Jing, B., Wu, L., Mao, H., Gong, S., He, J., Zou, C., Song, G., Li, X., and Wu, Z.: Development of a vehicle emission inventory with high temporal–spatial resolution based on NRT traffic data and its impact on air pollution in Beijing – Part 1: Development and evaluation of vehicle emission inventory, Atmos. Chem. Phys., 16, 3161–3170, https://doi.org/10.5194/acp-16-3161-2016, 2016.

Lang, J. L., Cheng, S. Y., Wei, W., Zhou, Y., Wei, X., and Chen, D. S.: A study on the trends of vehicular emissions in the Beijing-Tianjin-Hebei (BTH) region, China, Atmos. Environ., 62, 605–614, https://doi.org/10.1016/j.atmosenv.2012.09.006, 2012.

Li, H., Zhang, Q., Zheng, B., Chen, C., Wu, N., Guo, H., Zhang, Y., Zheng, Y., Li, X., and He, K.: Nitrate-driven urban haze pollution during summertime over the North China Plain, Atmos. Chem. Phys., 18, 5293–5306, https://doi.org/10.5194/acp-18-5293-2018, 2018.

Li, X., Zhang, Q., Zhang, Y., Zheng, B., Wang, K., Chen, Y., Wallington, T. J., Han, W. J., Shen, W., Zhang, X. Y., and He, K. B.: Source contributions of urban PM2.5 in the Beijing-Tianjin-Hebei region: Changes between 2006 and 2013 and relative impacts of emissions and meteorology, Atmos. Environ., 123, 229–239, https://doi.org/10.1016/j.atmosenv.2015.10.048, 2015.

Liu, H., Man, H., Tschantz, M., Wu, Y., He, K., and Hao, J.: VOC from Vehicular Evaporation Emissions: Status and Control Strategy, Environ. Sci. Technol., 49, 14424–14431, 2015.

Masey, N., Hamilton, S., and Beverland, I. J.: Development and evaluation of the RapidAir((R)) dispersion model, including the use of geospatial surrogates to represent street canyon effects, Environ. Modell. Softw., 108, 253–263, https://doi.org/10.1016/j.envsoft.2018.05.014, 2018.

ORNL (Oak Ridge National Laboratory): LandScan Global Population Database, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, 2012.

UNEP: A Review of Air Pollution Control in Beijing: 1998–2013, United Nations Environment Programme (UNEP), Nairobe, Kenya, available at: https://www.researchgate.net/publication/284177759_A_Review_of_Air_Pollution_Control_in_Beijing_1998-2013 (last access: 30 June 2019), 2016.

Wang, H., Fu, L., Lin, X., Zhou, Y., and Chen, J.: A bottom-up methodology to estimate vehicle emissions for the Beijing urban area, Sci. Total Environ., 407, 1947–1953, https://doi.org/10.1016/j.scitotenv.2008.11.008, 2009.

Wang, H., Ni, D., Chen, Q.-Y., and Li, J.: Stochastic modeling of the equilibrium speed-density relationship, J. Adv. Transport., 47, 126–150, https://doi.org/10.1002/atr.172, 2013.

Wang, X., Westerdahl, D., Hu, J., Wu, Y., Yin, H., Pan, X., and Zhang, K. M.: On-road diesel vehicle emission factors for nitrogen oxides and black carbon in two Chinese cities, Atmos. Environ., 46, 45–55, https://doi.org/10.1016/j.atmosenv.2011.10.033, 2012.

Wu, X., Wu, Y., Zhang, S., Liu, H., Fu, L., and Hao, J.: Assessment of vehicle emission programs in China during 1998–2013: Achievement, challenges and implications, Environ. Pollut., 214, 556–567, https://doi.org/10.1016/j.envpol.2016.04.042, 2016.

Wu, Y., Zhang, S. J., Li, M. L., Ge, Y. S., Shu, J. W., Zhou, Y., Xu, Y. Y., Hu, J. N., Liu, H., Fu, L. X., He, K. B., and Hao, J. M.: The challenge to NOx emission control for heavy-duty diesel vehicles in China, Atmos. Chem. Phys., 12, 9365–9379, https://doi.org/10.5194/acp-12-9365-2012, 2012.

Wu, Y., Zhang, S., Hao, J., Liu, H., Wu, X., Hu, J., Walsh, M. P., Wallington, T. J., Zhang, K. M., and Stevanovic, S.: On-road vehicle emissions and their control in China: A review and outlook, Sci. Total. Environ., 574, 332–349, https://doi.org/10.1016/j.scitotenv.2016.09.040, 2017.

Yang, B., Zhang, K. M., Xu, W. D., Zhang, S., Batterman, S., Baldauf, R. W., Deshmukh, P., Snow, R., Wu, Y., Zhang, Q., Li, Z., and Wu, X.: On-Road Chemical Transformation as an Important Mechanism of NO2 Formation, Environ. Sci. Technol., 52, 4574–4582, https://doi.org/10.1021/acs.est.7b05648, 2018.

Zhang, S., Wu, Y., Liu, H., Huang, R., Yang, L., Li, Z., Fu, L., and Hao, J.: Real-world fuel consumption and CO2 emissions of urban public buses in Beijing, Appl. Energ., 113, 1645–1655, https://doi.org/10.1016/j.apenergy.2013.09.017, 2014a.

Zhang, S., Wu, Y., Wu, X., Li, M., Ge, Y., Liang, B., Xu, Y., Zhou, Y., Liu, H., Fu, L., and Hao, J.: Historic and future trends of vehicle emissions in Beijing, 1998–2020: A policy assessment for the most stringent vehicle emission control program in China, Atmos. Environ., 89, 216–229, https://doi.org/10.1016/j.atmosenv.2013.12.002, 2014b.

Zhang, S., Wu, Y., Huang, R., Wang, J., Yan, H., Zheng, Y., and Hao, J.: High-resolution simulation of link-level vehicle emissions and concentrations for air pollutants in a traffic-populated eastern Asian city, Atmos. Chem. Phys., 16, 9965–9981, https://doi.org/10.5194/acp-16-9965-2016, 2016.

Zhang, S., Wu, Y., Yan, H., Du, X., Max Zhang, K., Zheng, X., Fu, L., and Hao, J.: Black carbon pollution for a major road in Beijing: Implications for policy interventions of the heavy-duty truck fleet, Transport. Res. D-Tr. E., 68, 110–121, https://doi.org/10.1016/j.trd.2017.07.013, 2017.

Zhang, S. J., Niu, T. L., Wu, Y., Zhang, K. M., Wallington, T. J., Xie, Q. Y., Wu, X. M., and Xu, H. L.: Fine-grained vehicle emission management using intelligent transportation system data, Environ. Pollut., 241, 1027–1037, https://doi.org/10.1016/j.envpol.2018.06.016, 2018.

Zheng, B., Huo, H., Zhang, Q., Yao, Z. L., Wang, X. T., Yang, X. F., Liu, H., and He, K. B.: High-resolution mapping of vehicle emissions in China in 2008, Atmos. Chem. Phys., 14, 9787–9805, https://doi.org/10.5194/acp-14-9787-2014, 2014.

Zheng, H., Cai, S., Wang, S., Zhao, B., Chang, X., and Hao, J.: Development of a unit-based industrial emission inventory in the Beijing–Tianjin–Hebei region and resulting improvement in air quality modeling, Atmos. Chem. Phys., 19, 3447–3462, https://doi.org/10.5194/acp-19-3447-2019, 2019.

Zheng, J., Che, W., Wang, X., Louie, P., and Zhong, L.: Road-Network-Based Spatial Allocation of On-Road Mobile Source Emissions in the Pearl River Delta Region, China, and Comparisons with Population-Based Approach, J. Air Waste Manage., 59, 1405–1416, https://doi.org/10.3155/1047-3289.59.12.1405, 2009.

Zheng, X., Wu, Y., Jiang, J., Zhang, S., Liu, H., Song, S., Li, Z., Fan, X., Fu, L., and Hao, J.: Characteristics of On-road Diesel Vehicles: Black Carbon Emissions in Chinese Cities Based on Portable Emissions Measurement, Environ. Sci. Technol., 49, 13492–13500, https://doi.org/10.1021/acs.est.5b04129, 2015.