High-resolution in situ characterization of micromechanisms in CFRP laminates under mode II loading

Engineering Fracture Mechanics - Tập 260 - Trang 108189 - 2022
Sota Oshima1, Aya Mamishin2, Masaki Hojo2, Masaaki Nishikawa2, Naoki Matsuda2, Manato Kanesaki3
1Department of Aeronautics and Astronautics, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino-shi, Tokyo, 191-0065, Japan
2Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
3Department of Systems Engineering, Okayama Prefectural University, 111 Kuboki, Soja-shi, Okayama 719-1197 Japan

Tài liệu tham khảo

Pipes, 1970, Interlaminar stresses in composite laminates under uniform axial extension, J Compos Mater, 4, 538, 10.1177/002199837000400409 Pagano, 1973, Some observations on the interlaminar strength of composite laminates, Int J Mech Sci, 15, 679, 10.1016/0020-7403(73)90099-4 Adams DF, Carlsson LA, Pipes RB. Experimental characterization of advanced composite materials: Third edition. Boca Raton, FL: CRC Press LLC, 2003. Russell AJ, Street KN. Moisture and temperature effects on the mixed-mode delamination fracture of unidirectional graphite/epoxy. In: Johnson WS, editor. STP 876 Delamination and debonding of materials. Philadelphia: American Society for Testing and Materials; 1985, p. 349–70. Carlsson, 1986, Mode II interlaminar fracture of graphite/epoxy and graphite/PEEK, J Reinf Plast Compos, 5, 170, 10.1177/073168448600500302 Davies, 1994, Numerical modelling of impact damage, Compos, 25, 342, 10.1016/S0010-4361(94)80004-9 Davies, 1995, Impact damage prediction in carbon composite structures, Int J Impact Eng, 16, 149, 10.1016/0734-743X(94)00039-Y Cartié, 2002, Effect of resin and fibre properties on impact and compression after impact performance of CFRP, Compos Part A: Appl Sci Manuf, 33, 483, 10.1016/S1359-835X(01)00141-5 ASTM D7905/D7905M-14: Standard test method for determination of the Mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites, West Conshohocken: ASTM International; 2014. JIS K7086-93: Testing method for interlaminar fracture toughness of carbon fiber reinforced plastics, Tokyo: Japanese Standards Association; 1993. (In Japanese). Kageyama K, Kikuchi, M, Yanagisawa, N. Stabilized end notched flexure test: Characterization of mode II Interlaminar crack growth. In: O’Brien TK, editor. STP 1110 Composite materials: Fatigue and fracture (third volume). Philadelphia: American Society for Testing and Materials; 1991, p.210–25. Martin, 1999, Mode II fracture toughness evaluation using four point bend, end notched flexure test, Plast Rubber Compos, 28, 401, 10.1179/146580199101540565 Kageyama, 1999, Four-point bend ENF test applied to mode II interlaminar fracture toughness characterization for composite laminates, Proc. 6th Int. Jpn SAMPE Symp., 585 Schueker C, Davidson BD. Effect of friction on the perceived mode II delamination toughness from three- and four-point bend end-notched flexure tests. In: Grant P, Rousseau CQ, editors. STP 1383 Composite structures: theory and practice. West Conshohoken: American Society for Testing and Materials; 2000, p.334–44. Corleto CR, Bradley WL. Mode II delamination fracture toughness of unidirectional graphite/epoxy composites. In: Lagace P, editor. STP 1012 Composite materials: Fatigue and fracture, second volume. Philadelphia: American Society for Testing and Materials; 1989, p.201–21. Davies, 1990, Glass/nylon-6.6 composites: Delamination resistance testing, Compos Sci Technol, 38, 211, 10.1016/0266-3538(90)90059-E Davies, 1990, Measurement of GIc and GIIc in carbon/epoxy composites, Compos Sci Technol, 39, 193, 10.1016/0266-3538(90)90041-3 Russell A. Initiation and growth of mode II delamination in toughened composites. In: O’Brien TK, editor. STP 1110 Composite materials: Fatigue and fracture (third volume). Philadelphia: American Society for Testing and Materials; 1991, p.226–42. Martin, 1991, Interlaminar fracture characterization: A current review, Proc. 2nd Japan Int. SAMPE Symp., 538 Tanaka, 1995, Prestandardization study on mode II interlaminar fracture toughness test for CFRP in Japan, Compos, 26, 257, 10.1016/0010-4361(95)93669-B O'Brien, 1998, Interlaminar fracture toughness: the long and winding road to standardization, Compos B, 29, 57, 10.1016/S1359-8368(97)00013-9 Masaki, 1994, Effect of matrix resin on delamination fatigue crack growth in CFRP laminates, Eng Fract Mech, 49, 35, 10.1016/0013-7944(94)90109-0 Bradley WL. Relationship of matrix toughness to interlaminar fracture toughness. In: Friedrich K, editor. Application of Fracture Mechanics to Composite Materials. Amsterdam: Elsevier; 1989, p. 159–87. Friedrich K. Fractographic analysis of polymer composites. In: Friedrich K, editor. Application of Fracture Mechanics to Composite Materials. Amsterdam: Elsevier; 1989, p. 425–87. Arai, 2008, Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer, Compos Sci Tech, 68, 516, 10.1016/j.compscitech.2007.06.007 Arguelles, 2010, Fatigue delamination, initiation, and growth, under mode I and II of fracture in a carbon-fiber epoxy composite, Polym Compos, 31, 700, 10.1002/pc.20855 Mohammadi, 2021, The effect of mode II fatigue crack growth rate on the fractographic features of CFRP composite laminates: An acoustic emission and scanning electron microscopy analysis, Eng Fract Mech, 241, 107408, 10.1016/j.engfracmech.2020.107408 O’Brien, 1998, Composite interlaminar shear fracture toughness, GIIc: shear measurement or sheer myth?, 3 Saito, 2012, Experimental evaluation of the damage growth restraining in 90° layer of thin-ply CFRP cross-ply laminates, Adv Comps Mater, 21, 57, 10.1163/156855112X629522 Du, 2017, Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre/epoxy composite laminates, Compos Sci Technol, 140, 123, 10.1016/j.compscitech.2016.12.028 Gutkin, 2016, A physically based model for kink-band growth and longitudinal crushing of composites under 3D stress states accounting for friction, Compos Sci Technol, 135, 39, 10.1016/j.compscitech.2016.09.002 Borstnar, 2016, Three-dimensional deformation mapping of Mode I interlaminar crack extension in particle-toughened interlayers, Acta Mater, 103, 63, 10.1016/j.actamat.2015.09.059 Borstnar, 2015, Interlaminar fracture micro-mechanisms in toughened carbon fibre reinforced plastics investigated via synchrotron radiation computed tomography and laminography, Compos Part A: Appl Sci Manuf, 71, 176, 10.1016/j.compositesa.2015.01.012 Watanabe, 2020, Nanoscale in situ observations of crack initiation and propagation in carbon fiber/epoxy composites using synchrotron radiation X-ray computed tomography, Compos Sci Technol, 197, 108244, 10.1016/j.compscitech.2020.108244 Krüger R, Rinderknecht S, König M. Two- and three-dimensional finite element analyses of crack fronts in a multidirectional composite ENF specimen. ISD-Report No. 97/1. Institute for Statics and Dynamics of Aerospace Structures, University of Stuttgart, 1997. Nikishkov, 2016, In-situ measurements of fracture toughness properties in composite laminates, Mater Des, 94, 303, 10.1016/j.matdes.2016.01.008 Hojo, 2002, Mode I and II delamination fatigue crack growth behavior of alumina fiber/epoxy laminates in liquid nitrogen, Int J Fatigue, 24, 109, 10.1016/S0142-1123(01)00065-2 Sato, 2014, Novel test method for accurate characterization of intralaminar fracture toughness in CFRP laminates, Compos B Eng, 65, 89, 10.1016/j.compositesb.2013.10.021 Davies, 1989, Measurement of initiation values of GIC in IM6/PEEK composites, Compos. Sci Technol., 35, 301, 10.1016/0266-3538(89)90041-9 Murri GB, Martin R. Effect of initial delamination on mode I and mode II interlaminar fracture toughness and fatigue fracture threshold. In: Stinchcomb WW and Ashbaugh NE, editors. STP 1156 Composite materials: Fatigue and fracture, fourth volume. Philadelphia: American Society for Testing and Materials; 1993, p.239–56. Hojo M, Aoki T. Thickness effect of double cantilever beam specimen on interlaminar fracture toughness of AS4/PEEK and T800/epoxy laminates. In: Stinchcomb WW and Ashbaugh NE, editors. STP 1156 Composite materials: Fatigue and fracture, fourth volume. Philadelphia: American Society for Testing and Materials; 1993, p.281–98. Davies, 1992, Round-robin interlaminar fracture testing of carbon-fibre-reinforced epoxy and PEEK composites, Compos Sci Tech, 43, 129, 10.1016/0266-3538(92)90003-L O’Brien TK, Murri GB, Salpekar SA. Interlaminar shear fracture toughness and fatigue thresholds for composite materials. In: Lagace P, editor. STP 1012 Composite materials: Fatigue and fracture, second volume. Philadelphia: American Society for Testing and Materials; 1989, p.222-250. Chai, 1988, Shear fracture, Int J Fract, 37, 137, 10.1007/BF00041716 Blackman, 2005, The determination of the mode II adhesive fracture resistance, GIIC, of structural adhesive joints: an effective crack length approach, Eng Fract Mech, 72, 877, 10.1016/j.engfracmech.2004.08.007 Lee, 1997, Mode II delamination failure mechanisms of polymer matrix composites, J Mater Sci, 32, 1287, 10.1023/A:1018552506085 ASTM D5379/D5379M-12: Standard test method for shear properties of composite materials by the V-notched beam method, West Conshohocken: ASTM International; 2012.