High-resolution electro-encephalogram: source estimates of Laplacian-transformed somatosensory-evoked potentials using a realistic subject head model constructed from magnetic resonance images

Medical & Biological Engineering & Computing - Tập 38 - Trang 512-519 - 2000
F. Babiloni1,2, C. Babiloni1,2, L. Locche3, F. Cincotti4, P. M. Rossini5, F. Carducci1
1Institute of Human Physiology, University of Rome, Rome, Italy
2Laboratory of Computational Engineering, Helsinki University of Technology, Espoo, Finland
3A. Fa. R. CRCCS, Divisione di Neurologia, Osp. Fatebene Fratelli Isola Tiberina, Rome, Italy
4Fondazione Santa Lucia, IRCCS, Rome, Italy
5San Giovanni di Dio, Istituto Sacro Cuore di Gesu, IRCCS, Brescia, Italy

Tóm tắt

A novel high-resolution electro-encephalographic (EEG) procedure is proposed, including high spatial sampling (128 channels), a realistic magnetic resonance-constructed subject head model, a multi-dipole cortical source model and regularised weighted minimum-norm linear inverse source estimation (WMN). As an innovation, EEG potentials (two healthy subjects; median-nerve, short-latency somatosensory-evoked potentials (SEPs)) are preliminarily Laplacian-transformed (LT) to remove brain electrical activity generated by subcortical sources (i.e. not represented in the source model). LT-WMN estimates are mathematically evaluated by figures of merit (WMN estimates as a reference). Results show higher dipole identifiability (0.69;0.88), lower dipole localisation error (0.6 mm; 7.8mm) and lower spatial dispersion (8.6 mm; 24mm) in LT-WMN than in WMN estimates (Bonferroni corrected p<0.001). These estimates are presented on the subject modelled cortical surface to highlight the increased spatial information content in LT-WMN compared with WMN estimates. The proposed high-resolution EEG technique is useful for the study of somatosensory functions in basic research and clinical applications.

Tài liệu tham khảo

Allison, G., McCarthy, C., Wood, S., andJones, J. (1991): ‘Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings’.Brain,114, pp. 2465–2503 Allison, T., McCarthy, G., Luby, M., Puce, A., andSpencer, D. D. (1996): ‘Localization of functional regions of human mesial cortex by somatosensory-evoked potential recording and by cortical stimulation’,Electroenceph. Clin, Neurophysiol,100, pp. 126–140 Babiloni, F., Babiloni, C., Carducci, F., Fattorini, L., Anello, C., Onorati, P., andUrbano, A. (1997): ‘High resolution EEG: a new model-dependent spatial deblurring method using a realistically-shaped MR-constructed subject's head model’,Electroenceph. Clin. Neurophysiol.,102, pp. 69–80 Buchner, H., Adams, L., Muller, A., Ludwig, I., Knepper, A., Thron, A., Niemann, K., andScherg, M. (1995): ‘Somatotopy of human somatosensory cortex revealed by dipole source analysis of early somatosensory-evoked potentials and 3D-MR tomography’, Electroenceph. Clin. Neurophysiol.,96, pp. 121–134 Cheron, G., andBorenstein, S. (1991): ‘Gating of the early components of the frontal and parietal SEPs in different sensorymotor interference modalities’,Electroenceph. Clin. Neurophysiol.,80, pp. 522–530 Choi, B. K., (1988): ‘Triangulation of scattered data in 3D space’,Computer-aided design,20, (5), p. 239 Christiansen, H. N. (1978): ‘Conversion of complex contour line definitions into polygonal element mosaics’,Comp. Graph.,12, pp. 187–192 Desmedt, J. E., Nguyen, T., andBourguet, M. (1987): ‘Bit-mapped color imaging of human evoked potentials with reference to the N20, P22, P27 and N30 somatosensory responses’,Electroenceph. Clin. Neurophysiol.,68, pp. 1–19. Freeman, W. (1980): ‘Use of spatial deconvolution to compensate for distortion of EEG by volume conduction’,IEEE Trans.,BME-27, pp. 421–429 Garcia-Larrea, L., Bastuji, H., andMauguiére, F. (1992): ‘Unmasking of cortical SEP components by changes in stimulus rate: a topography study’,Electroenceph. Clin. Neurophysiol.,84, pp. 71–83 Gevins, A. (1989): ‘Dynamic functional topography of cognitive task’,Brain Topogr.,2, pp. 37–56 Gevins, A., Brickett, P., Costales, B., Le, J., andReutter, B. (1990): ‘Beyond topographic mapping: towards functional-anatomical imaging with 124-channel EEG and 3-D MRIs’,Brain Topogr.,1, pp. 53–64 Gevins, A., Leong, H., Smith, M., Le, J., andDu, R. (1995): ‘Mapping cognitive brain function with modern high-resolution electroencephalography’,Trends Neurosc.,18, pp. 429–436 Gevins, A., Le, J., Leong, H., McEvoy, L. K., andSmith, M. E. (1999): ‘Deblurring’,J. Clin. Neurophysiol.,16, (3), pp. 204–213 Grave de Peralta Menendez, R., Gonzalez Andino, S. andLutkenhoner, B. (1996): ‘Figures of merit to compare linear distributed inverse solutions’,Brain Topography,9,(2), pp. 117–124 Grave de Peralta, R., Hauk, O., Gonzalez, Andino, S., Vogt, H., andMichel, C. M. (1997): ‘Linear inverse solution with optimal resolution kernels applied to the electromagnetic tomography’,Human Brain Mapping,5, pp. 454–467. Grave de Peralta Menendez, R., andGonzalez Andino, S. L. (1998): ‘Distributed source models: standard solutions and new developments’,in Uhl, C. (ed.): Analysis of neurophysiological brain functioning’ (Springer Verlag) pp. 176–201 Golub, G. H., andVan Loan, C. F. (1989). ‘Matrix computations, 2nd edn’, (John Hopkins University Press, Baltimore) pp. 79–81 Hamalainen, M., andSarvas, J. (1989): ‘Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data’,IEEE Trans.,BME-36, pp. 165–191 Hamalainen, M., andIlmoniemi, R. (1984): Interpreting meausured magnetic field of the brain: estimates of the current distributions’. Technical report TKK-F-A559, Helsinki University of Technology Hansen, P. C. (1992): ‘Analysis of discrete ill-posed problems by means of the L-curve’,SIAM Rev.,34, pp. 561–580 Hansen, P. C. (1993): ‘Numerical tools for the analysis and solution of Fredholm integral equations of the first kind’,Inverse Probl.,8, pp. 849–872 Hjiorth, B. (1975): ‘An online transformation of EEG scalp potentials into orthogonal source derivations’.Electroenceph. Clin. Neurophysiol.,39, pp. 526–530 Huiskamp, G. J. M. (1991): ‘Difference formulas for the surface Laplacian on a triangulate surface’,J. Comput. Phys.,95, pp. 477–496 Kearfott, R., Sidman, R., Major, D., andHill, D. (1991): ‘Numerical test of a method for simulating electrical potentials on the cortical surface’,IEEE Trans. BME-38, pp. 294–299 Lawson, C. L., andHanson, R. J. (1974). ‘Solving least squares problems’ (Prentice Hall, Englewood Cliff, New Jersey) Le, J., andGevins, A. (1993): ‘A method to reduce blur distortion from EEG's using a realistic head model’,IEEE Trans. BME-40, pp. 517–528 Mauguiére, F., andDesmedt, J. E. (1991): ‘Focal capsular vascular lesions selectively deafferent the prerolandic or the parietal cortex: SEP evidence’,Ann. Neurol.,30, p. 70 Meijs, J., Weier, O., Peters, M., andvan Oosterom, A. (1993): ‘On the numerical accuracy of the boundary element method’,IEEE Trans., BME-42, pp. 1038–1049 Menke, W. (1989): ‘Geophysical data analysis: discrete inverse theory’ (Academic Press, San Diego, California) Nunez, P., Pilgreen, K., Westdorp, A., Law, S., andNelson, A. (1991): ‘A visual study of surface potentials and Laplacians due to distributed neocortical sources: computer simulations and evoked potentials’,Brain Topogr.,4, pp. 151–168 Nunez, P. L., Silberstein, R. B., Cadiush, P. J., Wijesinghe, J., Westdorp, A. F., andSrinivasan, R. (1994): ‘A theoretical and experimental study of high resolution EEG based on surface Laplacians and cortical imaging’,Electroenceph. Clin. Neurophysiol.,90, pp. 40–57 Nunez, P. (1995): ‘Neocortical dynamics and human EEG rhythms’ (Oxford University Press, New York) Pascual-Marqui, R. D., andMichel, C. M. (1994): ‘LORETA (low resolution brain electromagnetic tomography): new authentic 3D functional images of the brain’,ISBET Newslett.,5, p. 4 Pascual-Marqui, R. D. (1995): ‘Reply to comments by Hamalainen, Hmoniemi and Nunez’,ISBET Newslett., (6), pp. 16–28 Rossini, P. M., Babiloni, F., Bernardi, G., Cecchi, L., Johnson, P. B., Malentacca, A., Stanzione, P., andUrbano, A. (1989): ‘Abnormalities of short latency somatosensory-evoked potentials in parkinsonian patients’,Electroenceph. Clin. Neurophysiol.,74, pp. 277–289 Rossini, P. M., Babiloni, F., Babiloni, C., Ambrosini, A., Onorati, P., andUrbano, A. (1997): ‘Topography of spatially-enhanced short-latency somatosensory-evoked potentials’,NeuroReport,8,(4), pp. 991–995 Sidman, R., Vincent, J., Smith, D., andLee, L. (1992): ‘Experimental test of the cortical imaging technique: applications to the response to median nerve stimulation and the localization of epileptiform discharge’,IEEE Trans., BME-39, pp. 437–444 Srebro, R. (1994): ‘Continuous current source inversion of evoked potential fields in a spherical head model’,IEEE Trans., BME-41, pp. 437–444 Tarantola, A. (1987): ‘Inverse problem theory’ (Elsevier) Urbano, A., Babiloni, F., Babiloni, C., Ambrosini, A., Onorati, P., andRossini, P. M. (1997): ‘Human short-latency cortical responses to somatosensory stimulation. A high resolution EEG study’,NeuroReport,8,(15), pp. 3239–3243 Wood, C., Cohen, L. G., Cuffin, N., Yarita, M., andAllison, T. (1985): ‘Electrical sources in human somatosensory cortex: identification by combined magnetic and potential recordings’,Science,227, pp. 1051–1053 Zar, H. (1984): ‘Biostatistical analysis’ (Prentice-Hall, New York)