High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity

Nature Biotechnology - Tập 28 Số 4 - Trang 371-377 - 2010
Elisa Närvä1, Reija Autio1, Nelly Rahkonen1, Lingjia Kong2, N. M. Harrison3, Danny Kitsberg4, Lodovica Borghese5, Joseph Itskovitz‐Eldor6, Omid Rasool1, Petr Dvořák7, Outi Hovatta8, Timo Otonkoski9, Timo Tuuri9, Wei Cui10, Oliver Brüstle5, Duncan Baker11, Edna L. Maltby11, H. D. M. Moore12, Nissim Benvenisty13, Peter W. Andrews3, Olli Yli‐Harja14, Riitta Lahesmaa1
1Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
2Department of Signal Processing, Tampere University of Technology, Tampere, Finland
3Centre for Stem Cell Biology and the Department of Biomedical Science, University of Sheffield, Sheffield, UK
4Stem Cell Technologies Ltd., Jerusalem, Israel
5Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn and Hertie Foundation, Bonn, Germany
6Technion-Israel Institute of Technology and Department of Obstetrics and Gynecology, Faculty of Medicine, Rambam Health Care Campus, Haifa, Israel
7Department of Biology, Masaryk University & Department of Molecular Embryology, Faculty of Medicine, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Brno, Czech Republic
8Department CLINTEC, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
9Program of Molecular Neurology, Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
10Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Hammersmith Campus, London, UK
11Sheffield Diagnostic Genetic Services, Sheffield Children's NHS Trust, Sheffield, UK
12Centre for Stem Cell Biology and the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
13Department of Genetics, Stem Cell Unit, The Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
14Institute for Systems Biology, Seattle, Washington, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Draper, J.S., Moore, H.D., Ruban, L.N., Gokhale, P.J. & Andrews, P.W. Culture and characterization of human embryonic stem cells. Stem Cells Dev. 13, 325–336 (2004).

Draper, J.S. et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22, 53–54 (2004).

Hanson, C. & Caisander, G. Human embryonic stem cells and chromosome stability. APMIS 113, 751–755 (2005).

Enver, T. et al. Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum. Mol. Genet. 14, 3129–3140 (2005).

Baker, D.E. et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat. Biotechnol. 25, 207–215 (2007).

Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).

Feuk, L., Carson, A.R. & Scherer, S.W. Structural variation in the human genome. Nat. Rev. Genet. 7, 85–97 (2006).

Iafrate, A.J. et al. Detection of large-scale variation in the human genome. Nat. Genet. 36, 949–951 (2004).

Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

Futreal, P.A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 177–183 (2004).

Kallioniemi, A. CGH microarrays and cancer. Curr. Opin. Biotechnol. 19, 36–40 (2008).

Jong, K. et al. Cross-platform array comparative genomic hybridization meta-analysis separates hematopoietic and mesenchymal from epithelial tumors. Oncogene 26, 1499–1506 (2007).

Zheng, H.T., Peng, Z.H., Li, S. & He, L. Loss of heterozygosity analyzed by single nucleotide polymorphism array in cancer. World J. Gastroenterol. 11, 6740–6744 (2005).

Cervantes, R.B., Stringer, J.R., Shao, C., Tischfield, J.A. & Stambrook, P.J. Embryonic stem cells and somatic cells differ in mutation frequency and type. Proc. Natl. Acad. Sci. USA 99, 3586–3590 (2002).

Donahue, S.L., Lin, Q., Cao, S. & Ruley, H.E. Carcinogens induce genome-wide loss of heterozygosity in normal stem cells without persistent chromosomal instability. Proc. Natl. Acad. Sci. USA 103, 11642–11646 (2006).

Inzunza, J. et al. Comparative genomic hybridization and karyotyping of human embryonic stem cells reveals the occurrence of an isodicentric X chromosome after long-term cultivation. Mol. Hum. Reprod. 10, 461–466 (2004).

Maitra, A. et al. Genomic alterations in cultured human embryonic stem cells. Nat. Genet. 37, 1099–1103 (2005).

Caisander, G. et al. Chromosomal integrity maintained in five human embryonic stem cell lines after prolonged in vitro culture. Chromosome Res. 14, 131–137 (2006).

Wu, H. et al. Copy number variant analysis of human embryonic stem cells. Stem Cells 26, 1484–1489 (2008).

Spits, C. et al. Recurrent chromosomal abnormalities in human embryonic stem cells. Nat. Biotechnol. 12, 1361–1363 (2008).

Hubbard, T.J. et al. Ensembl 2007. Nucleic Acids Res. 35, D610–D617 (2007).

Monk, M., Hitchins, M. & Hawes, S. Differential expression of the embryo/cancer gene ECSA(DPPA2), the cancer/testis gene BORIS and the pluripotency structural gene OCT4, in human preimplantation development. Mol. Hum. Reprod. 14, 347–355 (2008).

Lindblom, A., Rotstein, S., Skoog, L., Nordenskjold, M. & Larsson, C. Deletions on chromosome 16 in primary familial breast carcinomas are associated with development of distant metastases. Cancer Res. 53, 3707–3711 (1993).

Cleton-Jansen, A.M. et al. Different mechanisms of chromosome 16 loss of heterozygosity in well- versus poorly differentiated ductal breast cancer. Genes Chromosom. Cancer 41, 109–116 (2004).

Carter, B.S. et al. Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc. Natl. Acad. Sci. USA 87, 8751–8755 (1990).

Jenner, M.W. et al. Gene mapping and expression analysis of 16q loss of heterozygosity identifies WWOX and CYLD as being important in determining clinical outcome in multiple myeloma. Blood 110, 3291–3300 (2007).

Mortensen, R.M., Conner, D.A., Chao, S., Geisterfer-Lowrance, A.A. & Seidman, J.G. Production of homozygous mutant ES cells with a single targeting construct. Mol. Cell. Biol. 12, 2391–2395 (1992).

Lefort, N. et al. Human embryonic stem cells reveal recurrent genomic instability at 20q11.21. Nat. Biotechnol. 26, 1364–1366 (2008).

Mantel, C. et al. Checkpoint-apoptosis uncoupling in human and mouse embryonic stem cells: a source of karyotpic instability. Blood 109, 4518–4527 (2007).

Rodriguez-Jimenez, F.J., Moreno-Manzano, V., Lucas-Dominguez, R. & Sanchez-Puelles, J.M. Hypoxia causes downregulation of mismatch repair system and genomic instability in stem cells. Stem Cells 26, 2052–2062 (2008).

Garcia-Perez, J.L. et al. LINE-1 retrotransposition in human embryonic stem cells. Hum. Mol. Genet. 16, 1569–1577 (2007).

Hastings, P.J. Adaptive amplification. Crit. Rev. Biochem. Mol. Biol. 42, 271–283 (2007).

Osafune, K. et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat. Biotechnol. 26, 313–315 (2008).

Andrews, P.W. et al. Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem. Soc. Trans. 33, 1526–1530 (2005).

The International HapMap Consortium The international HapMap project. Nature 426, 789–796 (2003).

Eyre, T.A. et al. The HUGO gene nomenclature database, 2006 updates. Nucleic Acids Res. 34, D319–D321 (2006).

Dai, M. et al. Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res. 33, e175 (2005).

Bengtsson, H., Simpson, K., Bullard, J. & Hansen, K. . Aroma.Affymetrix: A Generic Framework In R For Analyzing Small To Very Large Affymetrix Data Sets In Bounded Memory. Technical report 745. (Department of Statistics, University of California, Berkeley, 2008).

Bolstad, B.M., Irizarry, R.A., Astrand, M. & Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).

Hautaniemi, S. et al. A strategy for identifying putative causes of gene expression variation in human cancers. J. Franklin Inst. 341, 77–88 (2004).

Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc., B 57, 289–300 (1995).

Jarvinen, A.K. et al. Identification of target genes in laryngeal squamous cell carcinoma by high-resolution copy number and gene expression microarray analyses. Oncogene 25, 6997–7008 (2006).