High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J.-M. Nano-sized transition metal oxides as negative electrode material for lithium-ion batteries. Nature 407, 496–499 (2000).
Tarascon, J.-M., Grugeon, S., Laruelle, S., Larcher, D. & Poizot, P. in Lithium Batteries – Science and Technology (eds Nazri, G. A. & Pistoia, G.) Ch. 7 (Kluwer Academic, Boston, 2003).
Poizot, P., Laruelle, S., Grugeon, S. & Tarascon, J.-M. Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li. J. Electrochem. Soc. 149, A1212–A1217 (2002).
Pereira, N., Klein, L. C. & Amatucci, G. G. The electrochemistry of Zn3N2 and LiZnN. A lithium reaction mechanism for metal nitride electrodes. J. Electrochem. Soc. 149, A262–A2717 (2002).
Pralong, V., Souza, D. C. S., Leung, K. T. & Nazar, L. F. The mechanism of reversible lithium uptake in CoP3 at low potential: role of the anion. Electrochem. Commun. 4, 516–520 (2002).
Li, H., Balaya, P. & Maier, J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc. 151, A1878–A1885 (2004).
Whitehead, A. H., Elliott, J. M. & Owen, J. R. Nanostructured tin for use as a negative electrode material in Li-ion. J. Power Sources 81–82, 33–38 (1999).
Kavan, L. & Grätzel, M. Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion. Electrochem. Solid-State Lett. 5, A39–A42 (2002).
Dewan, C. & Teeters, D. Vanadia xerogel nanocathodes used in lithium microbatteries. J. Power Sources 119–121, 310–315 (2003).
Yan, H. et al. Colloidal-crystal-templated synthesis of ordered macroporous electrode materials for Lithium secondary batteries. J. Electrochem. Soc. 150, A1102–A1107 (2003).
Nishizawa, M., Mukai, K., Kuwabata, S., Martin, C. R. & Yoneyama, H. Template synthesis of polypyrrole-coated spinel LiMn2O4 nanotubules and their properties as cathode active materials for lithium batteries. J. Electrochem. Soc. 144, 1923–1927 (1997).
Li, N., Patrissi, C. J. & Martin, C. R. Rate capabilities of nanostructured LiMn2O4 electrodes in aqueous electrolyte. J. Electrochem. Soc. 147, 2044–2049 (2000).
Li, N., Mitchell, D. T., Lee, K.-P. & Martin, C. R. A nanostructured honeycomb carbon anode. J. Electrochem. Soc. 150, A979–A984 (2003).
Patrissi, C. J. & Martin, C. R. Sol-gel-based template synthesis and Li-insertion rate performance of nanostructured vanadium pentoxide. J. Electrochem. Soc. 146, 3176–3180 (1999).
Patrissi, C. J. & Martin, C. R. Improving the volumetric energy densities of nanostructured V2O5 electrodes prepared using the template method. J. Electrochem. Soc. 148, A1247–A1253 (2001).
Croce, F., Sides, C. R., Young, V. Y., Martin, C. R. & Scrosatti, B. A high-rate, nanocomposite LiFePO4/carbon cathode. Electrochem. Solid-State Lett. 8, A484–A487 (2005).
Che, G., Jirage, K. B., Fisher, E. R., Martin, C. R. & Yoneyama, H. Chemical-vapor deposition-based template synthesis of microtubular TiS2 battery electrodes. J. Electrochem. Soc. 144, 4296–4302 (1997).
Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T. & Schlager, J. J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. in Vitro 19, 975–983 (2005).
Thackeray, M. M. & Coetzer, J. A preliminary investigation of the electrochemical performance of α-Fe2O3 and Fe3O4 cathodes in high-temperature cells. Mater. Res. Bull. 16, 591–597 (1981).
Thackeray, M. M., David, W. I. F. & Goodenough, J. B. Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0<x<2). Mater. Res. Bull. 17, 785–793 (1982).
Coey, J. M. D., Berkowitz, A. E., Balcells, Ll., Putris, F. F. & Parker, F. T. Magnetoresistance of magnetite. Appl. Phys. Lett. 72, 734–736 (1998).
Dobrev, D., Vetter, J. & Angert, N. Electrochemical preparation of metal microstructures on large areas of etched ion track membranes. Nucl. Instrum. Methods B 149, 207–212 (1999).
Konishi, Y. et al. Electrodeposition of Cu nanowire arrays with a template. J. Electroanal. Chem. 559, 149–153 (2003).
Leopold, S. et al. Electrochemical deposition of cylindrical Cu/Cu2O microstructures. Electrochim. Acta 47, 4393–4397 (2002).
Valizadeh, S., George, J. M., Leisner, P. & Hultman, L. Electrochemical synthesis of Ag/Co multilayered nanowires in porous polycarbonate membranes. Thin Solid Films 402, 262–271 (2002).
Ueda, M. et al. Double-pulse technique as an electrochemical tool for controlling the preparation of metallic nanoparticles. Electrochim. Acta 48, 377–386 (2002).
Oh, J., Tak, Y. & Lee, J. Electrochemically deposited nanocolumnar junctions of Cu2O and ZnO on Ni nanowires. Electrochem. Solid-State Lett. 8, C81–C84 (2005).
Kothari, H. M. et al. Electrochemical deposition and characterization of Fe3O4 films produced by the reduction of Fe(III)-triethanolamine. J. Mater. Res. 21, 293–301 (2006).
Mitra, S., Poizot, P., Finke, A. & Tarascon, J.-M. Growth and electrochemical characterization vs. Li of Fe3O4 electrodes made by electrodeposition. Adv. Funct. Mater. in the press.
Doyle, M., Newman, J. & Reimers, J. A quick method of measuring the capacity versus discharge rate for a dual lithium-ion insertion cell undergoing cycling. J. Power Sources 52, 211–216 (1994).
Tarascon, J.-M., Gozdz, A. S., Schumtz, C., Shokoohi, F. & Warren, P. C. Performance of Bellcore's plastic rechargeable Li-ion batteries. Solid State Ion. 86–88, 49–54 (1996).
Bard, J. A. & Faulkner, L. R. Electrochemical Methods (Wiley, New York, 2001).
Weppner, W. & Huggins, R. A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb . J. Electrochem. Soc. 124, 1569–1578 (1977).
Novák, P. CuO cathode in lithium cells–-II. Reduction mechanism of CuO. Electrochim. Acta 30, 1687–1692 (1985).
Kang, Y.-M. et al. A study on the charge-discharge mechanism of Co3O4 as an anode for the Li ion secondary battery. Electrochim. Acta 50, 3667–3673 (2005).
Kutty, T. R. N. & Murthy, A. R. V. Solid state reaction between urea nitrate and tricalcium phosphate. Mechanistic study. Indian J. Technol. 12, 447–450 (1974).