High quantiles estimation with Quasi-PORT and DPOT: An application to value-at-risk for financial variables
Tài liệu tham khảo
Araújo Santos, 2012, Forecasting value-at-risk with a duration based POT method, Mathematics and Computers in Simulation.
Araújo Santos, 2012, A new class of independence tests for interval forecasts evaluation, Computational Statistics and Data Analysis, 56, 3366, 10.1016/j.csda.2010.10.002
Araújo Santos, 2006, Peaks over random threshold methodology for tail index and high quantile estimation, RevStat Statistical Journal, 4, 227
Balkema, 1974, Residual life time at great age, Annals of Probabilities, 2, 792, 10.1214/aop/1176996548
Beirlant, 1999, Tail index estimation and exponential regression model, Extremes, 2, 177, 10.1023/A:1009975020370
Bollerslev, 1986, Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307, 10.1016/0304-4076(86)90063-1
Caeiro, 2002, A class of asymptotically unbiased semi parametric estimators of the index, Test, 11, 345, 10.1007/BF02595711
Caeiro, 2005, Direct reduction of bias of the classical Hill estimator, Review of Statistics, 3, 111
Chen, Y. -H., & Tu, A. H. Estimating hedged portfolio value-at-risk using the conditional copula: An illustration of model risk. International Review of Economics and Finance. (2013), http://dx.doi.org/10.1016/j.iref.2013.01.006.
Christoffersen, 1998, Evaluating intervals forecasts, International Economic Review, 39, 841, 10.2307/2527341
Danielsson, 2000, Value at risk and extreme returns, Annales dEconomie et de Statistique, ENSAE, 60, 239, 10.2307/20076262
de Haan, 1989, Extremal behavior of solutions to a stochastic difference equation with application to ARCH processes, Stochastic Processes and Their Applications, 32, 213, 10.1016/0304-4149(89)90076-8
Diebold, F. X., Schuermann, T., & Stroughair, J. D. (1998). Pitfalls and Opportunities in the use of extreme value theory in risk management. Working Paper, 98-10, Wharton School, University of Pennsylvania.
Ding, 1993, A long memory property of stock market return and a new model, Journal of Empirical Finance, 1, 83, 10.1016/0927-5398(93)90006-D
Embrechts, 1997
Fraga Alves, 2003, A new class of semi parametric estimators of the second order parameter, Portugaliae Mathematica, 60, 193
Feuerverger, 1999, Estimating a tail exponent by modeling departure from a Pareto distribution, Annals of Statistics, 27, 760, 10.1214/aos/1018031215
Gomes, 2012, A computational study of a quasi-PORT methodology for VaR based on second-order reduced-bias estimation, Journal of Statistical Computation and Simulation, 82, 587, 10.1080/00949655.2010.547196
Gomes, 2008, Tail Index estimation for heavy-tailed models: Accommodation of bias in weighted log-excesses, Journal of Royal Statistical Society, B70, 31
Gomes, 2007, A sturdy reduced bias extreme quantile (VaR) estimator, Journal American Statistical Association, 102, 280, 10.1198/016214506000000799
Gomes, 2007, Improving second order reduced-bias tail index estimator, Review of Statistics, 5, 177
Gomes, 2002, Asymptotically unbiased estimators of the tail index based on the external estimation of the second order parameter, Extremes, 5, 5, 10.1023/A:1020925908039
Gomes, 2001, Generalizations of the Hill estimator asymptotic versus finite sample behaviour, Journal of Statistical Planning and Inference, 93, 161, 10.1016/S0378-3758(00)00201-9
Gomes, 2000, Alternatives to a semi parametric estimator of parameters of rare events the Jackknife methodology, Extremes, 3, 207, 10.1023/A:1011470010228
Hammoudeh, 2013, Downside risk management and VaR-based optimal portfolios for precious metals, oil and stocks, The North American Journal of Economics and Finance, 25
Hill, 1975, A Simple general approach to inference about the tail of a distribution, Annals of Statistics, 3, 1163, 10.1214/aos/1176343247
Kuester, 2006, Value-at-risk prediction: A comparison of alternative strategies, Journal of Financial Econometrics, 4, 53, 10.1093/jjfinec/nbj002
Kupiec, 1995, Techniques for verifying the accuracy of risk measurement models, Journal of Derivatives, 3, 73, 10.3905/jod.1995.407942
Longin, 2001, From VaR to stress testing: The extreme value approach, Journal of Banking and Finance, 24, 1097, 10.1016/S0378-4266(99)00077-1
McNeil, 2000, Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach, Journal of Empirical Finance, 7, 271, 10.1016/S0927-5398(00)00012-8
Pickands, 1975, Statistical inference using extreme value order statistics, Annals of Statistics, 3, 119, 10.1214/aos/1176343003
Peng, 1998, Asymptotically unbiased estimator for the extreme-value index, Statistics and Probability Letters, 38, 107, 10.1016/S0167-7152(97)00160-0
R Development Core Team, 2012
Resnick, 1996
Ribatet, 2009
Riskmetrics, 1996
Smith, 1987, Estimating tails of probability distributions, Annals of Statistics, 15, 1174, 10.1214/aos/1176350499
Tsay, 2010, 10.1002/9780470644560
Weissman, 1978, Estimation of parameters and large quantiles based on the k largest observations, Journal American Statistical Association, 73, 812
Wermers, 2006, Performance evaluation with portfolio holdings information, The North American Journal of Economics and Finance, 17, 207, 10.1016/j.najef.2006.01.001
Wuertz, 2008