High-quality computational ghost imaging with multi-scale light fields optimization

Optics & Laser Technology - Tập 170 - Trang 110196 - 2024
Hong Wang1, Xiao-Qian Wang1, Chao Gao1, Xuan Liu2, Yu Wang1, Huan Zhao1, Zhi-Hai Yao1
1Department of Physics, Changchun University of Science and Technology, Changchun 130022, PR China
2College of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022, PR China

Tài liệu tham khảo

Pittman, 1995, Optical imaging by means of two-photon quantum entanglement, Phys. Lett. A, 52, R3429 Bennink, 2002, “Two-photon” coincidence imaging with a classical source, Phys. Rev. Lett., 89, 10.1103/PhysRevLett.89.113601 Martienssen, 1964, Coherence and fluctuations in light beams, Amer. J. Phys., 32, 919, 10.1119/1.1970023 Shapiro, 2008, Computational ghost imaging, Phys. Rev. A, 78, 10.1103/PhysRevA.78.061802 Bromberg, 2009, Ghost imaging with a single detector, Phys. Rev. A, 79, 10.1103/PhysRevA.79.053840 Duarte, 2008, Single-pixel imaging via compressive sampling, IEEE Signal Process. Mag., 25, 83, 10.1109/MSP.2007.914730 Ryczkowski, 2016, Ghost imaging in the time domain, Nat. Photonics, 10, 167, 10.1038/nphoton.2015.274 Faccio, 2016, Optical communications: Temporal ghost imaging, Nat. Photonics, 10, 150, 10.1038/nphoton.2016.30 Devaux, 2016, Computational temporal ghost imaging, Optica, 3, 698, 10.1364/OPTICA.3.000698 Xu, 2018, 1000 Fps computational ghost imaging using LED-based structured illumination, Opt. Express, 26, 2427, 10.1364/OE.26.002427 Zhou, 2019, Multi-resolution progressive computational ghost imaging, J. Opt., 21, 10.1088/2040-8986/ab1471 Wang, 2016, Fast reconstructed and high-quality ghost imaging with fast Walsh–Hadamard transform, Photonics Res., 4, 240, 10.1364/PRJ.4.000240 Sun, 2017, A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging, Sci. Rep., 7, 1 Yu, 2019, Single-pixel imaging with origami pattern construction, Sensors, 19, 5135, 10.3390/s19235135 Zhang, 2018, Singular value decomposition ghost imaging, Opt. Express, 26, 12948, 10.1364/OE.26.012948 Chen, 2022, Denoising in SVD-based ghost imaging, Opt. Express, 30, 6248, 10.1364/OE.452991 Zhang, 2007, Lensless Fourier-transform ghost imaging with classical incoherent light, Phys. Rev. A, 75, 10.1103/PhysRevA.75.021803 Meng, 2020, Sinusoidal single-pixel imaging based on fourier positive–negative intensity correlation, Sensors, 20, 1674, 10.3390/s20061674 Zhang, 2018, Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements, Optica, 5, 315, 10.1364/OPTICA.5.000315 Zhang, 2015, Single-pixel imaging by means of Fourier spectrum acquisition, Nat. Commun., 6, 1 Czajkowski, 2018, Real-time single-pixel video imaging with Fourier domain regularization, Opt. Express, 26, 20009, 10.1364/OE.26.020009 Yang, 2016, Scalar-matrix-structured ghost imaging, Photonics Res., 4, 281, 10.1364/PRJ.4.000281 Luo, 2018, Orthonormalization method in ghost imaging, Opt. Express, 26, 23093, 10.1364/OE.26.023093 Liansheng, 2019, Optical image hiding under framework of computational ghost imaging based on an expansion strategy, Opt. Express, 27, 7213, 10.1364/OE.27.007213 Liansheng, 2019, Information encryption based on the customized data container under the framework of computational ghost imaging, Opt. Express, 27, 16493, 10.1364/OE.27.016493 Liansheng, 2013, Multiple-image encryption based on phase mask multiplexing in fractional Fourier transform domain, Opt. Lett., 38, 1996, 10.1364/OL.38.001996 Liansheng, 2019, Silhouette-free interference-based multiple-image encryption using cascaded fractional Fourier transforms, Opt. Lasers Eng., 113, 29, 10.1016/j.optlaseng.2018.10.002 Zhou, 2019, Edge detection based on joint iteration ghost imaging, Opt. Express, 27, 27295, 10.1364/OE.27.027295 Maragos, 1989, Pattern spectrum and multiscale shape representation, IEEE Trans. Pattern Anal. Mach. Intell., 11, 701, 10.1109/34.192465 Ophir, 2011, Multi-scale dictionary learning using wavelets, IEEE J. Sel. Top. Sign. Proces., 5, 1014, 10.1109/JSTSP.2011.2155032 Chen, 2014, Application of multi-correlation-scale measurement matrices in ghost imaging via sparsity constraints, Appl. Opt., 53, 2924, 10.1364/AO.53.002924 Ma, 2019, Ghost imaging LiDAR via sparsity constraints using push-broom scanning, Opt. Express, 27, 13219, 10.1364/OE.27.013219 Sun, 2016, Multi-scale adaptive computational ghost imaging, Sci. Rep., 6, 1 Horn, 1994 Zhou, 2023, Temporally and spatially variant-resolution illumination patterns in computational ghost imaging, Opt. Commun., 527, 10.1016/j.optcom.2022.128982 Huang, 2019, Block matching low-rank for ghost imaging, Opt. Express, 27, 38624, 10.1364/OE.27.038624