High quality and low loss surface acoustic wave SAW resonator based on chromium-doped AlN on sapphire

Applied Physics A Solids and Surfaces - Tập 127 - Trang 1-11 - 2021
Farouk Laidoudi1, Saad Amara2, Cinzia Caliendo3, Fouad Boubenider4, Fares Kanouni2, Abdenacer Assali2
1Research Center in Industrial Technologies CRTI Cheraga, Algiers, Algeria
2Research Unit in Optics and Photonics (UROP-CDTA), University of Setif, Setif, Algeria
3Institute for Photonics and Nanotechnologies, IFN-CNR, Rome, Italy
4Laboratory of Materials Physics, Faculty of Physics, University of Sciences and Technology - Houari Boumediene (U.S.T.H.B.), Bab-Ezzouar, Algiers, Algeria

Tóm tắt

This paper aims to investigate the performances of surface acoustic wave (SAW) resonators based on chromium-doped aluminum nitride (AlCrN) piezoelectric thin film on c-cut sapphire substrate. The electromechanical properties of AlCrN (mass density, elastic, dielectric and piezoelectric constants) are obtained from density functional theory calculations for different Cr-doping concentrations. Piezoelectricity is enhanced for Al1 − xCrxN with different x concentrations. Using finite element analysis, the electroacoustic parameters such as phase velocity, electromechanical coupling factor K2 of surface acoustic modes are determined for different AlCrN thickness-to-wavelength ratios and different Cr-doping concentrations. Higher order SAW modes arise at Cr concentration x = 25%. The electrical admittance and scattering parameter S21 for the fundamental SAW modes are determined. High K2, low loss and high-quality factor are found after incorporating Cr dopant. The comparison of the obtained results with the available numerical and experimental data on AlN doped with Scandium Sc has shown a considerable improvement of SAW devices characteristics, confirming that AlCrN can be adopted as a new piezoelectric material for high performances SAW devices.

Tài liệu tham khảo

T. Kimura, M. Omura, Y. Kishimoto, K. Y. Hashimoto, IEEE/MTT-S International Microwave Symposium-IMS, 846 (2018) J.O. Guerra-Pulido, P.R. Pérez-Alcázar, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38(3), 499 (2018) D. Li, X. Zu, D. Ao, Q. Tang, Y. Fu, Y. Guo, Y. Tang, Sens. Actuators B. 294, 55 (2019) C. Zhang, A. Ghosh, H. Zhang, S.Q. Shi, Smart Mater. Struct. 29(1), 015039 (2019) K. Tsubouchi, K. Sugai, N. Mikoshiba, Proc. IEEE Ultrasonics Symp. 375 (1981) T. Aubert, O. Elmazria, B. Assouar, A. Hamdan, D. Genève, Proc. IEEE Ultrasonics Symp, 1490 (2010) M. Reusch, S. Cherneva, Y. Lu, A. Žukauskaitė, L. Kirste, K. Holc, O. Ambacher, Appl. Surf. Sci. 407, 307 (2017) P. Limsuwan, N. Udomkan, S. Meejoo, P. Winotai, Int. J. Mod. Phys. B. 19(12), 2073 (2005) Campanella, H. Acoustic wave and electromechanical resonators: concept to key applications. Artech House (2010) C. Caliendo, P. Imperatori, Appl. Phys. Lett. 83(8), 1641 (2003) M.Z. Aslam, V. Jeoti, S. Karuppanan, M.S. Pandian, E.M. Ferrer, K. Suresh, Sens. Actuators A 313, 112202 (2020) S. Barth, H. Bartzsch, D. Glöß, P. Frach, T. Modes, O. Zywitzki, G. Gerlach, Microsyst. Technol. 22(7), 1613 (2016) S.J. Kang, Y.H. Joung, Appl. Surf. Sci. 253(17), 7330 (2007) R.S. Weis, T.K. Gaylord, Appl. Phys. A. 37(4), 191 (1985) W. Heywang, K. Lubitz, W. Wersing, Piezoelectricity: evolution and future of a technology, vol 114, Springer (2008) T. Aubert, O. Elmazria, B. Assouar, L. Bouvot, M. Oudich, Appl. Phys. Lett. 96(20), 203503 (2010) M. Akiyama, K. Kano, A. Teshigahara, Appl. Phys. Lett. 95(16), 162107 (2009) M. Akiyama, T. Harada, C.N. Xu, K. Nonaka, T. Watanabe, Thin Solid Films 350(1–2), 85 (1999) J. Zhou, H.F. Pang, L. Garcia-Gancedo, E. Iborra, M. Clement, M. De Miguel-Ramos, D.M. Wang, Microfluid. Nanofluid. 18(4), 537 (2015) C.S. Sandu, F. Parsapour, S. Mertin, V. Pashchenko, R. Matloub, T. LaGrange, P. Muralt, Phys. Status Solidi A. 216(2), 1800569 (2019) S. Fichtner, N. Wolff, G. Krishnamurthy, A. Petraru, S. Bohse, F. Lofink, B. Wagner, J. Appl. Phys. 122(3), 035301 (2017) M. Gillinger, K. Shaposhnikov, T. Knobloch, M. Schneider, M. Kaltenbacher, U. Schmid, Appl. Phys. Lett. 108(23), 231601 (2016) K. Y. Hashimoto K Y, S. Sato, A. Teshigahara, T. Nakamura, K. Kano, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 60(3), 637 (2013) K. Fares, A. Saad, A. Abdenacer, A. Fahima, Q. Zou, Sens. Actuators, A, 111980 (2020) W. Wang, P.M. Mayrhofer, X. He, M. Gillinger, Z. Ye, X. Wang, J.K. Luo, Appl. Phys. Lett. 105(13), 133502 (2014) M. Gillinger, T. Knobloch, M. Schneider, U. Schmid, Proc. MDPI. 1(4), 341 (2017) M. Akiyama, K. Umeda, A. Honda, T. Nagase, Appl. Phys. Lett. 102(2), 021915 (2013) N. M. Feil, N. Kurz, D. F. Urban, A. Altayara, B. Christian, A. Ding, O. Ambacher, Proc. IEEE Ultrasonics Symp, 2588 (2019) M. Suzuki, S. Kakio, Proc. IEEE Ultrasonics Symp, 716 (2019). S. Manna, K.R. Talley, P. Gorai, J. Mangum, A. Zakutayev, G.L. Brennecka, C.V. Ciobanu, Phys. Rev. Appl. 9(3), 034026 (2018) P. H. Mayrhofer, D. Music, T. Reeswinkel, H. G. Fuß, J. M, Acta Mater. 56(11), 2469 (2008) N. Tatemizo, S. Imada, Y. Miura, H. Yamane, K. Tanaka, J. Phys.: Condens. Matter. 29(8), 085502 (2017) F. Ahmad, L. Zhang, J. Zheng, I. Sidra, S. Zhang, Coatings 10(4), 306 (2020) P.M. Böttger, L. Braginsky, V. Shklover, E. Lewin, J. Patscheider, D.G. Cahill, M. Sobiech, J. Appl. Phys. 116(1), 013507 (2014) G. Kresse, J. Furthmüller. Comput. Mater. Sci. 6(1), 15 (1996) S. Zhang, D. Holec, W.Y. Fu, C.J. Humphreys, M.A. Moram, J. Appl. Phys. 114(13), 133510 (2013) J. Tan, Y. Li, G. Ji, Comput. Mater. Sci. 58, 243 (2012) J. Phillips, Bonds and bands in semiconductors. Elsevier (2012) K. Hirata, H. Yamada, M. Uehara, S.A. Anggraini, M. Akiyama, ACS Omega 4(12), 15081 (2019) D. Royer, E. Dieulesaint, Elastic waves in solids I: Free and guided propagation, Springer Science & Business Media (1999) B. A. Auld, Acoustic Fields and Waves in Solids, A Wiley-Interscience Publication (1994) W. P. Mason, Physical acoustics: principles and methods, vol 9, Academic press (2013) F. Laidoudi, F. Boubenider, C. Caliendo, M. Hamidullah, J. Mech. 36(1), 7 (2020) T. Aubert, N. Naumenko, F. Bartoli, P. Pigeat, J. Streque, J. Ghanbaja, O. Elmazria, Appl. Phys. Lett. 115(8), 083502 (2019) T. Kimura, Y. Kishimoto, M. Omura, K. Y. Hashimoto, Jpn. J. Appl. Phys. 57(7S1), 07LD15 (2018) C. Caliendo, M. Hamidullah, J. Phys. D: Appl. Phys. 52(15), 153001 (2019) C.M. Lin, V. Yantchev, J. Zou, Y.Y. Chen, A.P. Pisano, J. Microelectromech. Syst. 23(1), 78 (2013) J. Zou, C.M. Lin, C.S. Lam, A.P. Pisano, J. Appl. Phys. 121(15), 154502 (2017) J. Streque, J. Camus, T. Laroche, S. Hage-Ali, H. M’Jahed, M. Rammal, O. Elmazria, IEEE Sens. J. (2020). Y. Ai, S. Yang, Z. Cheng, L. Zhang, L. Jia, B. Dong, Y. Zhang, J. Phys. D: Appl. Phys. 52(21), 215103 (2019) C. Caliendo, F. Laidoudi, Sensors. 20(5), 1380 (2020) C. Caliendo, Appl. Phys. Lett. 92, 033505 (2008) W.B. Wang, Y.Q. Fu, J.J. Chen, W.P. Xuan, J.K. Chen, X.Z. Wang, J.K. Luo, J. Micromech. Microeng. 26(7), 075006 (2016) G. Tang, T. Han, Q. Zhang, K. Yamazaki, T. Omori, K.Y. Hashimoto, J. Micromech. Microeng 26(11), 115002 (2016) Z. Hao, M. Park, D. G. Kim, A. Clark, R. Dargis, H. Zhu, A. Ansari, IEEE MTT-S International Microwave Symposium (IMS). 786 (2019) M. Sinusía Lozano, Z. Chen, O.A. Williams, G. F. Iriarte, Phys. Status Solidi A. 216(20), 1900360 (2019) M. Park, Z. Hao, R. Dargis, A. Clark, A. Ansari, J. Microelectromech. Syst. 29(4), 490 (2020) A. Ding, L. Kirste, Y. Lu, R. Driad, N. Kurz, V. Lebedev, O. Ambacher, Appl. Phys. Lett. 116(10), 101903 (2020) J. Xu, J.S. Thakur, G. Hu, Q. Wang, Y. Danylyuk, H. Ying, G.W. Auner, Appl. Phys. A. 83(3), 411 (2006) M. Richardson, S.K.R.S. Sankaranarayanan, V.R. Bhethanabotla, Appl. Phys. Lett. 104(25), 253501 (2014)