Nén áp suất cao và phủ chống thấm để nâng cao các thuộc tính cơ học và ổn định kích thước của ván gỗ bạch dương mềm

Yong Yu1,2, Aqiang Li1,2, Kaiya Yan1,2, Hosahalli S. Ramaswamy3, Songming Zhu1,2, Huanhuan Li4
1College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
2Key Laboratory of Equipment and Information in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, China
3Department of Food Science and Agricultural Chemistry, McGill University, Quebec, Canada
4Institute of Food Science, Zhejiang Academy of Agriculture Sciences, Hangzhou, China

Tóm tắt

Tóm tắtẢnh hưởng của quá trình xử lý bằng áp suất cao (HP) đến sự đặc chắc của các tấm gỗ bạch dương và các lớp phủ sau đó đã được đánh giá. Việc sử dụng lớp phủ dầu tung (TO) và nhựa epoxy (ER) nhằm cải thiện độ ổn định kích thước của gỗ đã qua nén HP. Độ mật độ của gỗ sau khi nén HP đã tăng từ 450 ± 50 kg/m3 cho mẫu kiểm soát lên 960 ± 20 kg/m3 ở mức 125 MPa. Quá trình này cũng làm giảm đáng kể độ dày trung bình của các tấm gỗ nén HP từ 29.7 ± 0.11 mm cho mẫu kiểm soát xuống còn 18.8 ± 0.53 mm sau khi nén HP ở mức 25 MPa và 14.3 ± 0.10 mm sau khi xử lý 125 MPa trong 30 giây. Độ bền cơ học được đo bằng độ cứng của gỗ nén đã tăng đáng kể từ 35% ở 25 MPa lên 96% ở 125 MPa so với gỗ không được xử lý. Như mong đợi, cả hai phương pháp phủ TO và ER đều giảm đáng kể hiện tượng phục hồi hình dạng của gỗ nén khi được lưu trữ trong bốn điều kiện độ ẩm tương đối khác nhau. ER cho thấy khả năng chống phồng tốt hơn so với TO và sẽ là sự lựa chọn tốt hơn.

Từ khóa

#áp suất cao #nén gỗ #ổn định kích thước #lớp phủ hydrophobic #bạch dương mềm #tính chất cơ học

Tài liệu tham khảo

Boonstra MJ, Blomberg J (2007) Semi-isostatic densification of heat-treated radiata pine. Wood Sci Technol 41(7):607. https://doi.org/10.1007/s00226-007-0140-y

Cai S, Jebrane M, Terziev N, Daniel G (2016) Mechanical properties and decay resistance of Scots pine (Pinus sylvestris L) sapwood modified by vinyl acetate-epoxidized linseed oil copolymer. Holzforschung 70(9):885–894. https://doi.org/10.1515/hf-2015-0248

Ang AF, Ashaari Z, Bakar ES, Ibrahim NA (2017) Possibility of enhancing the dimensional stability of jelutong (Dyera costulata) wood using glyoxalated alkali lignin-phenolic resin as bulking agent. Eur J Wood Wood Prod 76:269–282. https://doi.org/10.1007/s00107-016-1139-6

Seki M, Kiryu T, Miki T, Tanaka S, Shigematsu I, Kanayama K (2016) Extrusion of solid wood impregnated with phenol formaldehyde (PF) resin: effect of resin content and moisture content on extrudability and mechanical properties of extrudate. Bioresources 11(3):7697–7709. https://doi.org/10.15376/biores.11.3.7697-7709

Gabrielli CP, Kamke FA (2010) Phenol–formaldehyde impregnation of densified wood for improved dimensional stability. Wood Sci Technol 44(1):95–104. https://doi.org/10.1007/s00226-009-0253-6

Gao Z, Huang R, Lu J, Chen Z, Fei G, Zhan T (2016) Sandwich compression of wood: control of creating density gradient on lumber thickness and properties of compressed wood. Wood Sci Technol 50(4):833–844. https://doi.org/10.1007/s00226-016-0824-2

Laine K, Rautkari L, Ramsay J, Hill CAS, Hughes M (2013) Measuring the thickness swelling and set-recovery of densified and thermally modified Scots pine solid wood. J Mater Sci 48(24):8530–8538. https://doi.org/10.1007/s10853-013-7671-4

Blomberg J, Persson B, Bexell U (2006) Effects of semi-isostatic densification on anatomy and cell-shape recovery on soaking. Holzforschung 13(3):151–331. https://doi.org/10.1515/HF.2006.052

Navi P, Pittet V, Plummer CJG (2002) Transient moisture effects on wood creep. Wood Sci Technol 36(6):447–462. https://doi.org/10.1007/s00226-002-0157-1

Rautkari L, Laflin N, Hughes M (2011) Surface modification of Scots pine: the effect of process parameters on the through thickness density profile. J Mater Sci 46(14):4780–4786. https://doi.org/10.1007/s10853-011-5388-9

Laine K, Segerholm K, Wålinder M, Rautkari L, Hughes M (2016) Wood densification and thermal modification: hardness, set-recovery and micromorphology. Wood Sci Technol 50(5):1–12. https://doi.org/10.1007/s00226-016-0835-z

Blomberg J, Persson B (2005) An algorithm for comparing density in CT-images taken before and after compression of Pinus sylvestris. Holz als Roh- und Werkstoff 63(1):23–29. https://doi.org/10.1007/s00107-004-0544-4

Blomberg J (2005) Elastic strain at semi-isostatic compression of Scots pine (Pinus sylvestris). J Wood Sci 51(4):401–404. https://doi.org/10.1007/s10086-004-0666-7

Blomberg J, Persson B (2004) Plastic deformation in small clear pieces of Scots pine (Pinus sylvestris) during densification with the CaLignum process. J Wood Sci 50(4):307–314. https://doi.org/10.1007/s10086-003-0566-2

Navi P, Girardet F (2000) Effects of thermo-hydro-mechanical treatment on the structure and properties of wood. Holzforschung 54(3):287–293. https://doi.org/10.1515/hf.2000.048

Navi P, Heger F (2004) Combined densification and thermo-hydro-mechanical processing of wood. MRS Bull 29(5):332–336. https://doi.org/10.1557/mrs2004.100

Welzbacher CR, Wehsener J, Rapp AO, Haller P (2008) Thermo-mechanical densification combined with thermal modification of Norway spruce (Picea abies Karst) in industrial scale—dimensional stability and durability aspects. Holz als Roh- und Werkstoff 66(1):39–49. https://doi.org/10.1007/s00107-007-0198-0

Diouf PN, Stevanovic T, Cloutier A, Fang CH, Blanchet P, Koubaa A, Mariotti N (2011) Effects of thermo-hygro-mechanical densification on the surface characteristics of trembling aspen and hybrid poplar wood veneers. Appl Surf Sci 257(8):3558–3564. https://doi.org/10.1016/j.apsusc.2010.11.074

Kutnar A, Sernek M, Kamke FA Viscoelastic thermal compression (VTC) of wood. In: New technologies & materials in industries based on the forestry sector international scientific conference. 2007

Li H, Zhang F, Ramaswamy HS, Zhu S, Yong Y (2016) High-pressure treatment of Chinese fir wood: effect on density, mechanical properties, humidity-related moisture migration, and dimensional stability. Bioresources 11(4):10497–10510. https://doi.org/10.15376/biores.11.4.10497-10510

Yu Y, Zhang F, Zhu S, Li H (2017) Effects of high-pressure treatment on poplar wood: density profile, mechanical properties, strength potential index, and microstructure. BioResources 12(3):6283–6297. https://doi.org/10.15376/biores.12.3.6283-6297

Balasubramaniam VM, Barbosa-Cánovas GV, Lelieveld HLM (2016) High pressure processing of food-principles, technology and application. Springer, New York. https://doi.org/10.1007/978-1-4939-3234-4

Li H, Jiang X, Ramaswamy HS, Zhu S, Yong Y (2018) High-pressure treatment effects on density profile, surface roughness, hardness, and abrasion resistance of paulownia wood boards. Trans ASABE 61:1181–1188. https://doi.org/10.13031/trans.12718

Chen H, Qian L, Zeng B, Miao X, Yu L, Pu J (2013) Impregnation of poplar wood (Populus euramericana) with methylolurea and sodium silicate sol and induction of in situ gel polymerization by heating. Holzforschung 68(1):45–52. https://doi.org/10.1515/hf-2013-0028

Kutnar A, Kamke FA (2012) Influence of temperature and steam environment on set recovery of compressive deformation of wood. Wood Sci Technol 46(5):953–964. https://doi.org/10.1007/s00226-011-0456-5

Humar M, Lesar B (2013) Efficacy of linseed- and tung-oil-treated wood against wood-decay fungi and water uptake. Int Biodeterior Biodegrad 85(7):223–227. https://doi.org/10.1016/j.ibiod.2013.07.011

Žlahtič M, Mikac U, Serša I, Merela M, Humar M (2017) Distribution and penetration of tung oil in wood studied by magnetic resonance microscopy. Ind Crops Prod 96:149–157. https://doi.org/10.1016/j.indcrop.2016.11.049

Wang H, Liu Z, Wang E, Zhang X, Yuan R, Wu S, Zhu Y (2015) Facile preparation of superamphiphobic epoxy resin/modified poly(vinylidene fluoride)/fluorinated ethylene propylene composite coating with corrosion/wear-resistance. Appl Surf Sci 357:229–235. https://doi.org/10.1016/j.apsusc.2015.09.017

Yang YL, Yin YG, Xiong GJ (2013) Study of water resistance of wood coated with epoxy resin. J Build Mater 16(1):170–174. https://doi.org/10.3969/j.issn.1007-9629.2013.01.032

Belt T, Laine K, Hill CAS (2013) Cupping behaviour of surface densified Scots pine wood: the effect of process parameters and correlation with density profile characteristics. J Mater Sci 48(18):6426–6430. https://doi.org/10.1007/s10853-013-7443-1

Rautkari L, Kamke FA, Hughes M (2011) Density profile relation to hardness of viscoelastic thermal compressed (VTC) wood composite. Wood Sci Technol 45(4):693–705. https://doi.org/10.1007/s00226-010-0400-0

Laine K, Rautkari L, Hughes M (2013) The effect of process parameters on the hardness of surface densified; Scots pine solid wood. Eur J Wood Wood Prod 71(1):13–16. https://doi.org/10.1007/s00107-012-0649-0