Nén áp suất cao và phủ chống thấm để nâng cao các thuộc tính cơ học và ổn định kích thước của ván gỗ bạch dương mềm
Tóm tắt
Từ khóa
#áp suất cao #nén gỗ #ổn định kích thước #lớp phủ hydrophobic #bạch dương mềm #tính chất cơ họcTài liệu tham khảo
Boonstra MJ, Blomberg J (2007) Semi-isostatic densification of heat-treated radiata pine. Wood Sci Technol 41(7):607. https://doi.org/10.1007/s00226-007-0140-y
Cai S, Jebrane M, Terziev N, Daniel G (2016) Mechanical properties and decay resistance of Scots pine (Pinus sylvestris L) sapwood modified by vinyl acetate-epoxidized linseed oil copolymer. Holzforschung 70(9):885–894. https://doi.org/10.1515/hf-2015-0248
Ang AF, Ashaari Z, Bakar ES, Ibrahim NA (2017) Possibility of enhancing the dimensional stability of jelutong (Dyera costulata) wood using glyoxalated alkali lignin-phenolic resin as bulking agent. Eur J Wood Wood Prod 76:269–282. https://doi.org/10.1007/s00107-016-1139-6
Seki M, Kiryu T, Miki T, Tanaka S, Shigematsu I, Kanayama K (2016) Extrusion of solid wood impregnated with phenol formaldehyde (PF) resin: effect of resin content and moisture content on extrudability and mechanical properties of extrudate. Bioresources 11(3):7697–7709. https://doi.org/10.15376/biores.11.3.7697-7709
Gabrielli CP, Kamke FA (2010) Phenol–formaldehyde impregnation of densified wood for improved dimensional stability. Wood Sci Technol 44(1):95–104. https://doi.org/10.1007/s00226-009-0253-6
Gao Z, Huang R, Lu J, Chen Z, Fei G, Zhan T (2016) Sandwich compression of wood: control of creating density gradient on lumber thickness and properties of compressed wood. Wood Sci Technol 50(4):833–844. https://doi.org/10.1007/s00226-016-0824-2
Laine K, Rautkari L, Ramsay J, Hill CAS, Hughes M (2013) Measuring the thickness swelling and set-recovery of densified and thermally modified Scots pine solid wood. J Mater Sci 48(24):8530–8538. https://doi.org/10.1007/s10853-013-7671-4
Blomberg J, Persson B, Bexell U (2006) Effects of semi-isostatic densification on anatomy and cell-shape recovery on soaking. Holzforschung 13(3):151–331. https://doi.org/10.1515/HF.2006.052
Navi P, Pittet V, Plummer CJG (2002) Transient moisture effects on wood creep. Wood Sci Technol 36(6):447–462. https://doi.org/10.1007/s00226-002-0157-1
Rautkari L, Laflin N, Hughes M (2011) Surface modification of Scots pine: the effect of process parameters on the through thickness density profile. J Mater Sci 46(14):4780–4786. https://doi.org/10.1007/s10853-011-5388-9
Laine K, Segerholm K, Wålinder M, Rautkari L, Hughes M (2016) Wood densification and thermal modification: hardness, set-recovery and micromorphology. Wood Sci Technol 50(5):1–12. https://doi.org/10.1007/s00226-016-0835-z
Blomberg J, Persson B (2005) An algorithm for comparing density in CT-images taken before and after compression of Pinus sylvestris. Holz als Roh- und Werkstoff 63(1):23–29. https://doi.org/10.1007/s00107-004-0544-4
Blomberg J (2005) Elastic strain at semi-isostatic compression of Scots pine (Pinus sylvestris). J Wood Sci 51(4):401–404. https://doi.org/10.1007/s10086-004-0666-7
Blomberg J, Persson B (2004) Plastic deformation in small clear pieces of Scots pine (Pinus sylvestris) during densification with the CaLignum process. J Wood Sci 50(4):307–314. https://doi.org/10.1007/s10086-003-0566-2
Navi P, Girardet F (2000) Effects of thermo-hydro-mechanical treatment on the structure and properties of wood. Holzforschung 54(3):287–293. https://doi.org/10.1515/hf.2000.048
Navi P, Heger F (2004) Combined densification and thermo-hydro-mechanical processing of wood. MRS Bull 29(5):332–336. https://doi.org/10.1557/mrs2004.100
Welzbacher CR, Wehsener J, Rapp AO, Haller P (2008) Thermo-mechanical densification combined with thermal modification of Norway spruce (Picea abies Karst) in industrial scale—dimensional stability and durability aspects. Holz als Roh- und Werkstoff 66(1):39–49. https://doi.org/10.1007/s00107-007-0198-0
Diouf PN, Stevanovic T, Cloutier A, Fang CH, Blanchet P, Koubaa A, Mariotti N (2011) Effects of thermo-hygro-mechanical densification on the surface characteristics of trembling aspen and hybrid poplar wood veneers. Appl Surf Sci 257(8):3558–3564. https://doi.org/10.1016/j.apsusc.2010.11.074
Kutnar A, Sernek M, Kamke FA Viscoelastic thermal compression (VTC) of wood. In: New technologies & materials in industries based on the forestry sector international scientific conference. 2007
Li H, Zhang F, Ramaswamy HS, Zhu S, Yong Y (2016) High-pressure treatment of Chinese fir wood: effect on density, mechanical properties, humidity-related moisture migration, and dimensional stability. Bioresources 11(4):10497–10510. https://doi.org/10.15376/biores.11.4.10497-10510
Yu Y, Zhang F, Zhu S, Li H (2017) Effects of high-pressure treatment on poplar wood: density profile, mechanical properties, strength potential index, and microstructure. BioResources 12(3):6283–6297. https://doi.org/10.15376/biores.12.3.6283-6297
Balasubramaniam VM, Barbosa-Cánovas GV, Lelieveld HLM (2016) High pressure processing of food-principles, technology and application. Springer, New York. https://doi.org/10.1007/978-1-4939-3234-4
Li H, Jiang X, Ramaswamy HS, Zhu S, Yong Y (2018) High-pressure treatment effects on density profile, surface roughness, hardness, and abrasion resistance of paulownia wood boards. Trans ASABE 61:1181–1188. https://doi.org/10.13031/trans.12718
Chen H, Qian L, Zeng B, Miao X, Yu L, Pu J (2013) Impregnation of poplar wood (Populus euramericana) with methylolurea and sodium silicate sol and induction of in situ gel polymerization by heating. Holzforschung 68(1):45–52. https://doi.org/10.1515/hf-2013-0028
Kutnar A, Kamke FA (2012) Influence of temperature and steam environment on set recovery of compressive deformation of wood. Wood Sci Technol 46(5):953–964. https://doi.org/10.1007/s00226-011-0456-5
Humar M, Lesar B (2013) Efficacy of linseed- and tung-oil-treated wood against wood-decay fungi and water uptake. Int Biodeterior Biodegrad 85(7):223–227. https://doi.org/10.1016/j.ibiod.2013.07.011
Žlahtič M, Mikac U, Serša I, Merela M, Humar M (2017) Distribution and penetration of tung oil in wood studied by magnetic resonance microscopy. Ind Crops Prod 96:149–157. https://doi.org/10.1016/j.indcrop.2016.11.049
Wang H, Liu Z, Wang E, Zhang X, Yuan R, Wu S, Zhu Y (2015) Facile preparation of superamphiphobic epoxy resin/modified poly(vinylidene fluoride)/fluorinated ethylene propylene composite coating with corrosion/wear-resistance. Appl Surf Sci 357:229–235. https://doi.org/10.1016/j.apsusc.2015.09.017
Yang YL, Yin YG, Xiong GJ (2013) Study of water resistance of wood coated with epoxy resin. J Build Mater 16(1):170–174. https://doi.org/10.3969/j.issn.1007-9629.2013.01.032
Belt T, Laine K, Hill CAS (2013) Cupping behaviour of surface densified Scots pine wood: the effect of process parameters and correlation with density profile characteristics. J Mater Sci 48(18):6426–6430. https://doi.org/10.1007/s10853-013-7443-1
Rautkari L, Kamke FA, Hughes M (2011) Density profile relation to hardness of viscoelastic thermal compressed (VTC) wood composite. Wood Sci Technol 45(4):693–705. https://doi.org/10.1007/s00226-010-0400-0