High-precision measurement of a low Q value for allowed β−-decay of 131I related to neutrino mass determination

Physics Letters B - Tập 830 - Trang 137135 - 2022
T. Eronen1, Z. Ge1, A. de Roubin2, M. Ramalho1, J. Kostensalo3, J. Kotila1,4,5, O. Beliushkina1, C. Delafosse1, S. Geldhof1, W. Gins1, M. Hukkanen1,2, A. Jokinen1, A. Kankainen1, I.D. Moore1, D.A. Nesterenko1, M. Stryjczyk1, J. Suhonen1
1Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
2Centre d'Etudes Nucléaires de Bordeaux Gradignan, UMR 5797 CNRS/IN2P3 - Université de Bordeaux, 19 Chemin du Solarium, CS 10120, F-33175, Gradignan Cedex, France
3Natural Resources Institute Finland, Yliopistokatu 6, FI-80130, Joensuu, Finland
4Finnish Institute for Educational Research, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
5Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520-8120, USA

Tài liệu tham khảo

Aghanim, 2020, Planck 2018 results, Astron. Astrophys., 641, A6, 10.1051/0004-6361/201833910 Suhonen, 1998, Weak-interaction and nuclear-structure aspects of nuclear double beta decay, Phys. Rep., 300, 123, 10.1016/S0370-1573(97)00087-2 Avignone, 2008, Double beta decay, Majorana neutrinos, and neutrino mass, Rev. Mod. Phys., 80, 481, 10.1103/RevModPhys.80.481 Ejiri, 2019, Neutrino–nuclear responses for astro-neutrinos, single beta decays and double beta decays, Phys. Rep., 797, 1, 10.1016/j.physrep.2018.12.001 Ferri, 2015, The status of the MARE experiment with 187Re and 163Ho isotopes, Phys. Proc., 61, 227, 10.1016/j.phpro.2014.12.037 Myers, 2015, Atomic masses of tritium and helium-3, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.013003 Nesterenko, 2014, Direct determination of the atomic mass difference of Re 187 and Os 187 for neutrino physics and cosmochronology, Phys. Rev. C, Nucl. Phys., 90, 10.1103/PhysRevC.90.042501 Eliseev, 2015, Direct measurement of the mass difference of 163Ho and 163Dy solves the Q-value puzzle for the neutrino mass determination, Phys. Rev. Lett., 115, 10.1103/PhysRevLett.115.062501 Ranitzsch, 2017, Characterization of the Ho 163 electron capture spectrum: a step towards the electron neutrino mass determination, Phys. Rev. Lett., 119, 10.1103/PhysRevLett.119.122501 Shamsuzzoha Basunia, 2017, Nuclear data sheets for A=193, Nucl. Data Sheets, 143, 1, 10.1016/j.nds.2017.08.001 Kopp, 2010, Ultralow Q values for neutrino mass measurements, Phys. Rev. C, Nucl. Phys., 81, 10.1103/PhysRevC.81.045501 Eliseev, 2010, Direct mass measurements of 194Hg and 194Au: a new route to the neutrino mass determination?, Phys. Lett. B: Nucl. Elem. Part. High-Ener. Phys., 693, 426, 10.1016/j.physletb.2010.08.071 Haaranen, 2013, Beta decay of 115Cd and its possible ultra-low Q-value branch, Eur. Phys. J. A, 49, 1, 10.1140/epja/i2013-13093-8 Suhonen, 2014, Theoretical studies of rare weak processes in nuclei, Phys. Scr., 89, 10.1088/0031-8949/89/5/054032 Welker, 2017, Precision electron-capture energy in 202Pb and its relevance for neutrino mass determination, Eur. Phys. J. A, 53, 14, 10.1140/epja/i2017-12345-y Karthein, 2019, Direct decay-energy measurement as a route to the neutrino mass, Hyperfine Interact., 240, 1, 10.1007/s10751-019-1601-z Gamage, 2019, Identification and investigation of possible ultra-low Q value β decay candidates, Hyperfine Interact., 240, 10.1007/s10751-019-1588-5 Sandler, 2019, Investigation of the potential ultralow Q-value β-decay candidates Sr 89 and Ba 139 using Penning trap mass spectrometry, Phys. Rev. C, 100, 10.1103/PhysRevC.100.024309 Ge, 2021, Direct measurement of the mass difference of As72-Ge72 rules out As72 as a promising β-decay candidate to determine the neutrino mass, Phys. Rev. C, 103, 10.1103/PhysRevC.103.065502 Ge, 2021, Dy159 electron-capture: a new candidate for neutrino mass determination, Phys. Rev. Lett., 127, 10.1103/PhysRevLett.127.272301 Cattadori, 2005, Observation of β decay of 115In to the first excited level of 115Sn, Nucl. Phys. A, 748, 333, 10.1016/j.nuclphysa.2004.10.025 Wieslander, 2009, Smallest known Q value of any nuclear decay: the rare β-decay of In115(9/2+)→Sn115(3/2+), Phys. Rev. Lett., 103, 10.1103/PhysRevLett.103.122501 Mount, 2009, Q value of In115→Sn115(3/2+): the lowest known energy β decay, Phys. Rev. Lett., 103, 10.1103/PhysRevLett.103.122502 Kankainen, 2020, Recent experiments at the JYFLTRAP Penning trap, Hyperfine Interact., 241, 43, 10.1007/s10751-020-01711-5 Eronen, 2012, High-precision QEC-value measurements for superallowed decays, Eur. Phys. J. A, 48, 1, 10.1140/epja/i2012-12048-y De Roubin, 2020, High-precision Q-value Measurement confirms the potential of Cs 135 for absolute antineutrino mass scale determination, Phys. Rev. Lett., 124, 10.1103/PhysRevLett.124.222503 Huang, 2021, The AME 2020 atomic mass evaluation (I). Evaluation of input data, and adjustment procedures⁎, Chin. Phys. C, 45, 10.1088/1674-1137/abddb0 Wang, 2021, The AME 2020 atomic mass evaluation (II). Tables, graphs and references⁎, Chin. Phys. C, 45, 10.1088/1674-1137/abddaf Banik, 2020, Revealing multiple band structures in 131xe from α-induced reactions, Phys. Rev. C, 101, 10.1103/PhysRevC.101.044306 Khazov, 2006, Nuclear data sheets for A = 131, Nucl. Data Sheets, 107, 2715, 10.1016/j.nds.2006.10.001 Moore, 2013, Towards commissioning the new IGISOL-4 facility, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms, 317, 208, 10.1016/j.nimb.2013.06.036 Kolhinen, 2013, Recommissioning of JYFLTRAP at the new IGISOL-4 facility, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms, 317, 506, 10.1016/j.nimb.2013.07.050 Penttilä, 2016, Independent isotopic yields in 25 MeV and 50 MeV proton-induced fission of natU, Eur. Phys. J. A, 52, 104, 10.1140/epja/i2016-16104-4 Karvonen, 2008, A sextupole ion beam guide to improve the efficiency and beam quality at IGISOL, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms, 266, 4794, 10.1016/j.nimb.2008.07.022 Nieminen, 2001, Beam cooler for low-energy radioactive ions, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip., 469, 244, 10.1016/S0168-9002(00)00750-6 Savard, 1991, A new cooling technique for heavy ions in a Penning trap, Phys. Lett. A, 158, 247, 10.1016/0375-9601(91)91008-2 Eronen, 2008, JYFLTRAP: mass spectrometry and isomerically clean beams, Acta Phys. Pol. B, 39, 445 Kellerbauer, 2003, From direct to absolute mass measurements: a study of the accuracy of ISOLTRAP, Eur. Phys. J. D, 22, 53, 10.1140/epjd/e2002-00222-0 Nesterenko, 2018, Phase-imaging ion-cyclotron-resonance technique at the JYFLTRAP double Penning trap mass spectrometer., Eur. Phys. J. A, 54, 10.1140/epja/i2018-12589-y Eliseev, 2014, A phase-imaging technique for cyclotron-frequency measurements, Appl. Phys. B, Lasers Opt., 114, 107, 10.1007/s00340-013-5621-0 Eliseev, 2013, Phase-imaging ion-cyclotron-resonance measurements for short-lived nuclides, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.082501 Roux, 2013, Data analysis of Q-value measurements for double-electron capture with SHIPTRAP, Eur. Phys. J. D, 67, 1, 10.1140/epjd/e2013-40110-x Birge, 1932, The calculation of errors by the method of least squares, Phys. Rev., 40, 207, 10.1103/PhysRev.40.207 Höcker, 2013, Atomic masses of 82, 83Kr and 131,134Xe, Phys. Rev. A, 88, 10.1103/PhysRevA.88.052502 Verster, 1951, Measurement of the radiations from 131i and 131xe with a lens type beta-ray spectrometer, Physica, 17, 637, 10.1016/0031-8914(51)90048-1 Rose, 1952, Internal conversion in i131, Phys. Rev., 86, 863, 10.1103/PhysRev.86.863 Hardy, 1977, The essential decay of pandemonium: a demonstration of errors in complex beta-decay schemes, Phys. Lett. B, 71, 307, 10.1016/0370-2693(77)90223-4 Eliseev, 2011, Q values for neutrinoless double-electron capture in 96Ru, 162Er, and 168Yb, Phys. Rev. C, Nucl. Phys., 83, 10.1103/PhysRevC.83.038501 Nesterenko, 2019, High-precision measurement of the mass difference between 102Pd and 102Ru, Int. J. Mass Spectrom., 435, 204, 10.1016/j.ijms.2018.10.038 Brown, 2014, The shell-model code NuShellX@MSU, Nucl. Data Sheets, 120, 115, 10.1016/j.nds.2014.07.022 Brown, 2005, Magnetic moments of the 2 states around 132sn, Phys. Rev. C, 71, 10.1103/PhysRevC.71.044317 Kotila, 2012, Phase-space factors for double-β decay, Phys. Rev. C, 85, 10.1103/PhysRevC.85.034316