High-precision measurement of a low Q value for allowed β−-decay of 131I related to neutrino mass determination
Tài liệu tham khảo
Aghanim, 2020, Planck 2018 results, Astron. Astrophys., 641, A6, 10.1051/0004-6361/201833910
Suhonen, 1998, Weak-interaction and nuclear-structure aspects of nuclear double beta decay, Phys. Rep., 300, 123, 10.1016/S0370-1573(97)00087-2
Avignone, 2008, Double beta decay, Majorana neutrinos, and neutrino mass, Rev. Mod. Phys., 80, 481, 10.1103/RevModPhys.80.481
Ejiri, 2019, Neutrino–nuclear responses for astro-neutrinos, single beta decays and double beta decays, Phys. Rep., 797, 1, 10.1016/j.physrep.2018.12.001
Ferri, 2015, The status of the MARE experiment with 187Re and 163Ho isotopes, Phys. Proc., 61, 227, 10.1016/j.phpro.2014.12.037
Myers, 2015, Atomic masses of tritium and helium-3, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.013003
Nesterenko, 2014, Direct determination of the atomic mass difference of Re 187 and Os 187 for neutrino physics and cosmochronology, Phys. Rev. C, Nucl. Phys., 90, 10.1103/PhysRevC.90.042501
Eliseev, 2015, Direct measurement of the mass difference of 163Ho and 163Dy solves the Q-value puzzle for the neutrino mass determination, Phys. Rev. Lett., 115, 10.1103/PhysRevLett.115.062501
Ranitzsch, 2017, Characterization of the Ho 163 electron capture spectrum: a step towards the electron neutrino mass determination, Phys. Rev. Lett., 119, 10.1103/PhysRevLett.119.122501
Shamsuzzoha Basunia, 2017, Nuclear data sheets for A=193, Nucl. Data Sheets, 143, 1, 10.1016/j.nds.2017.08.001
Kopp, 2010, Ultralow Q values for neutrino mass measurements, Phys. Rev. C, Nucl. Phys., 81, 10.1103/PhysRevC.81.045501
Eliseev, 2010, Direct mass measurements of 194Hg and 194Au: a new route to the neutrino mass determination?, Phys. Lett. B: Nucl. Elem. Part. High-Ener. Phys., 693, 426, 10.1016/j.physletb.2010.08.071
Haaranen, 2013, Beta decay of 115Cd and its possible ultra-low Q-value branch, Eur. Phys. J. A, 49, 1, 10.1140/epja/i2013-13093-8
Suhonen, 2014, Theoretical studies of rare weak processes in nuclei, Phys. Scr., 89, 10.1088/0031-8949/89/5/054032
Welker, 2017, Precision electron-capture energy in 202Pb and its relevance for neutrino mass determination, Eur. Phys. J. A, 53, 14, 10.1140/epja/i2017-12345-y
Karthein, 2019, Direct decay-energy measurement as a route to the neutrino mass, Hyperfine Interact., 240, 1, 10.1007/s10751-019-1601-z
Gamage, 2019, Identification and investigation of possible ultra-low Q value β decay candidates, Hyperfine Interact., 240, 10.1007/s10751-019-1588-5
Sandler, 2019, Investigation of the potential ultralow Q-value β-decay candidates Sr 89 and Ba 139 using Penning trap mass spectrometry, Phys. Rev. C, 100, 10.1103/PhysRevC.100.024309
Ge, 2021, Direct measurement of the mass difference of As72-Ge72 rules out As72 as a promising β-decay candidate to determine the neutrino mass, Phys. Rev. C, 103, 10.1103/PhysRevC.103.065502
Ge, 2021, Dy159 electron-capture: a new candidate for neutrino mass determination, Phys. Rev. Lett., 127, 10.1103/PhysRevLett.127.272301
Cattadori, 2005, Observation of β decay of 115In to the first excited level of 115Sn, Nucl. Phys. A, 748, 333, 10.1016/j.nuclphysa.2004.10.025
Wieslander, 2009, Smallest known Q value of any nuclear decay: the rare β-decay of In115(9/2+)→Sn115(3/2+), Phys. Rev. Lett., 103, 10.1103/PhysRevLett.103.122501
Mount, 2009, Q value of In115→Sn115(3/2+): the lowest known energy β decay, Phys. Rev. Lett., 103, 10.1103/PhysRevLett.103.122502
Kankainen, 2020, Recent experiments at the JYFLTRAP Penning trap, Hyperfine Interact., 241, 43, 10.1007/s10751-020-01711-5
Eronen, 2012, High-precision QEC-value measurements for superallowed decays, Eur. Phys. J. A, 48, 1, 10.1140/epja/i2012-12048-y
De Roubin, 2020, High-precision Q-value Measurement confirms the potential of Cs 135 for absolute antineutrino mass scale determination, Phys. Rev. Lett., 124, 10.1103/PhysRevLett.124.222503
Huang, 2021, The AME 2020 atomic mass evaluation (I). Evaluation of input data, and adjustment procedures⁎, Chin. Phys. C, 45, 10.1088/1674-1137/abddb0
Wang, 2021, The AME 2020 atomic mass evaluation (II). Tables, graphs and references⁎, Chin. Phys. C, 45, 10.1088/1674-1137/abddaf
Banik, 2020, Revealing multiple band structures in 131xe from α-induced reactions, Phys. Rev. C, 101, 10.1103/PhysRevC.101.044306
Khazov, 2006, Nuclear data sheets for A = 131, Nucl. Data Sheets, 107, 2715, 10.1016/j.nds.2006.10.001
Moore, 2013, Towards commissioning the new IGISOL-4 facility, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms, 317, 208, 10.1016/j.nimb.2013.06.036
Kolhinen, 2013, Recommissioning of JYFLTRAP at the new IGISOL-4 facility, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms, 317, 506, 10.1016/j.nimb.2013.07.050
Penttilä, 2016, Independent isotopic yields in 25 MeV and 50 MeV proton-induced fission of natU, Eur. Phys. J. A, 52, 104, 10.1140/epja/i2016-16104-4
Karvonen, 2008, A sextupole ion beam guide to improve the efficiency and beam quality at IGISOL, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms, 266, 4794, 10.1016/j.nimb.2008.07.022
Nieminen, 2001, Beam cooler for low-energy radioactive ions, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip., 469, 244, 10.1016/S0168-9002(00)00750-6
Savard, 1991, A new cooling technique for heavy ions in a Penning trap, Phys. Lett. A, 158, 247, 10.1016/0375-9601(91)91008-2
Eronen, 2008, JYFLTRAP: mass spectrometry and isomerically clean beams, Acta Phys. Pol. B, 39, 445
Kellerbauer, 2003, From direct to absolute mass measurements: a study of the accuracy of ISOLTRAP, Eur. Phys. J. D, 22, 53, 10.1140/epjd/e2002-00222-0
Nesterenko, 2018, Phase-imaging ion-cyclotron-resonance technique at the JYFLTRAP double Penning trap mass spectrometer., Eur. Phys. J. A, 54, 10.1140/epja/i2018-12589-y
Eliseev, 2014, A phase-imaging technique for cyclotron-frequency measurements, Appl. Phys. B, Lasers Opt., 114, 107, 10.1007/s00340-013-5621-0
Eliseev, 2013, Phase-imaging ion-cyclotron-resonance measurements for short-lived nuclides, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.082501
Roux, 2013, Data analysis of Q-value measurements for double-electron capture with SHIPTRAP, Eur. Phys. J. D, 67, 1, 10.1140/epjd/e2013-40110-x
Birge, 1932, The calculation of errors by the method of least squares, Phys. Rev., 40, 207, 10.1103/PhysRev.40.207
Höcker, 2013, Atomic masses of 82, 83Kr and 131,134Xe, Phys. Rev. A, 88, 10.1103/PhysRevA.88.052502
Verster, 1951, Measurement of the radiations from 131i and 131xe with a lens type beta-ray spectrometer, Physica, 17, 637, 10.1016/0031-8914(51)90048-1
Rose, 1952, Internal conversion in i131, Phys. Rev., 86, 863, 10.1103/PhysRev.86.863
Hardy, 1977, The essential decay of pandemonium: a demonstration of errors in complex beta-decay schemes, Phys. Lett. B, 71, 307, 10.1016/0370-2693(77)90223-4
Eliseev, 2011, Q values for neutrinoless double-electron capture in 96Ru, 162Er, and 168Yb, Phys. Rev. C, Nucl. Phys., 83, 10.1103/PhysRevC.83.038501
Nesterenko, 2019, High-precision measurement of the mass difference between 102Pd and 102Ru, Int. J. Mass Spectrom., 435, 204, 10.1016/j.ijms.2018.10.038
Brown, 2014, The shell-model code NuShellX@MSU, Nucl. Data Sheets, 120, 115, 10.1016/j.nds.2014.07.022
Brown, 2005, Magnetic moments of the 2 states around 132sn, Phys. Rev. C, 71, 10.1103/PhysRevC.71.044317
Kotila, 2012, Phase-space factors for double-β decay, Phys. Rev. C, 85, 10.1103/PhysRevC.85.034316