High-precision estimation of hourly PM2.5 concentration based on a grid scale of satellite-derived products

Atmospheric Pollution Research - Tập 14 - Trang 101724 - 2023
Miao Zhang1, Lingyun Yuan2
1Guizhou Qiannan College of Science and Technology, Guizhou, 550699, China
2School of Information Science and Technology, Yunnan Normal University, Yunnan 650500, China

Tài liệu tham khảo

Brokamp, 2018, Predicting daily urban fine particulate matter concentrations using a random forest model[J], Environ. Sci. Technol., 52, 4173, 10.1021/acs.est.7b05381 Cao, 2022, Investigation of COVID-19-related lockdowns on the air pollution changes in augsburg in 2020, Germany[J], Atmos. Pollut. Res., 13, 10.1016/j.apr.2022.101536 Chang, 2020, Explore spatio-temporal PM2. 5 features in northern Taiwan using machine learning techniques [J], Sci. Total Environ., 736, 10.1016/j.scitotenv.2020.139656 Chen, 2018, Spatiotemporal modeling of PM2. 5 concentrations at the national scale combining land use regression and Bayesian maximum entropy in China [J], Environ. Int., 116, 300, 10.1016/j.envint.2018.03.047 Chen, 2019, Extreme gradient boosting model to estimate PM2. 5 concentrations with missing-filled satellite data in China [J], Atmos. Environ., 202, 180, 10.1016/j.atmosenv.2019.01.027 Chu, 2016, A review on predicting ground PM2. 5 concentration using satellite aerosol optical depth, J. Atmos., 7, 129 Di, 2016, Assessing PM2. 5 exposures with high spatiotemporal resolution across the continental United States [J], Environ. Sci. Technol., 50, 4712, 10.1021/acs.est.5b06121 Ding, 2021, A CatBoost approach with wavelet decomposition to improve satellite-derived high-resolution PM2. 5 estimates in Beijing-Tianjin-Hebei[J], Atmos. Environ., 249, 10.1016/j.atmosenv.2021.118212 Feng, 2016, The health effects of ambient PM2.5 and potential mechanisms [J], Ecotoxicol. Environ. Saf., 128, 67, 10.1016/j.ecoenv.2016.01.030 Gündoğdu, 2022, Estimating daily PM2.5 concentrations using an extreme gradient boosting model based on VIIRS aerosol products over southeastern Europe[J], Air Quality, Atmosphere & Health, 15, 2185, 10.1007/s11869-022-01245-5 Guo, 2017, Impact of diurnal variability and meteorological factors on the PM2. 5-AOD relationship: implications for PM2. 5 remote sensing [J], Environ. Pollut., 221, 94, 10.1016/j.envpol.2016.11.043 Guo, 2021, Estimating PM2. 5 concentrations via random forest method using satellite, auxiliary, and ground-level station dataset at multiple temporal scales across China in 2017[J], Sci. Total Environ., 778, 10.1016/j.scitotenv.2021.146288 Guo, 2021, Estimating ground-level PM2. 5 concentrations using two-stage model in Beijing-Tianjin-Hebei, China[J], Atmos. Pollut. Res., 12, 10.1016/j.apr.2021.101154 He, 2022, Spatiotemporal PM2.5 estimations in China from 2015 to 2020 using an improved gradient boosting decision tree [J], Chemosphere, 10.1016/j.chemosphere.2022.134003 Hu, 2017, Estimating PM2. 5 concentrations in the conterminous United States using the random forest approach [J], Environ. Sci. Technol., 51, 6936, 10.1021/acs.est.7b01210 Huang, 2018, Predicting monthly high-resolution PM2. 5 concentrations with random forest model in the North China Plain [J], Environ. Pollut., 242, 675, 10.1016/j.envpol.2018.07.016 Ibrahim, 2022, Machine learning-based approach using open data to estimate PM2. 5 over europe[J], Rem. Sens., 14, 3392, 10.3390/rs14143392 Jiang, 2021, Estimation of hourly full-coverage PM2.5 concentrations at 1-km resolution in China using a two-stage random forest model [J], Atmos. Res., 248, 10.1016/j.atmosres.2020.105146 Kampa, 2008, Human health effects of air pollution [J], Environ. Pollut., 151, 362, 10.1016/j.envpol.2007.06.012 Kim, 2015, A review on the human health impact of airborne particulate matter [J, Environ. Int., 74, 136, 10.1016/j.envint.2014.10.005 Lou, 2016, Socioeconomic drivers of PM2. 5 in the accumulation phase of air pollution episodes in the Yangtze River Delta of China [J], Int. J. Environ. Res. Publ. Health, 13, 928, 10.3390/ijerph13100928 Lu, 2021, Estimation of monthly 1 km resolution PM2. 5 concentrations using a random forest model over “2+ 26” cities, China [J], Urban Clim., 35, 10.1016/j.uclim.2020.100734 Lu, 2021, Estimating hourly PM2. 5 concentrations using Himawari-8 AOD and a DBSCAN-modified deep learning model over the YRDUA, China [J], Atmos. Pollut. Res., 12, 183, 10.1016/j.apr.2020.10.020 Mengfan, 2022, Including the feature of appropriate adjacent sites improves the PM2. 5 concentration prediction with long short-term memory neural network model[J], Sustain. Cities Soc., 76, 10.1016/j.scs.2021.103427 Pope, 2011, Lung cancer and cardiovascular disease mortality associated with ambient air pollution and cigarette smoke: shape of the exposure-response relationships [J], Environ. Health Perspect., 119, 1616, 10.1289/ehp.1103639 Shao, 2020, Estimating daily ground-level PM2. 5 in China with random-forest-based spatiotemporal kriging[J], Sci. Total Environ., 740, 10.1016/j.scitotenv.2020.139761 Shi, 2016, Low-concentration PM2.5 and mortality: estimating acute and chronic effects in a population-based study [J], Environ. Health Perspect., 124, 46, 10.1289/ehp.1409111 Song, 2017, Health burden attributable to ambient PM2. 5 in China [J], Environ. Pollut., 223, 575, 10.1016/j.envpol.2017.01.060 Stafoggia, 2019, Estimation of daily PM10 and PM2. 5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model [J], Environ. Int., 124, 170, 10.1016/j.envint.2019.01.016 Tang, 2019, Comparison of GOCI and Himawari-8 aerosol optical depth for deriving full-coverage hourly PM2. 5 across the Yangtze River Delta [J], Atmos. Environ., 217, 10.1016/j.atmosenv.2019.116973 Teng, 2022, 24-Hour prediction of PM2. 5 concentrations by combining empirical mode decomposition and bidirectional long short-term memory neural network[J], Sci. Total Environ., 821, 10.1016/j.scitotenv.2022.153276 Wang, 2003, Intercomparison between satellite‐derived aerosol optical thickness and PM2. 5 mass: implications for air quality studies [J], Geophys. Res. Lett., 30, 10.1029/2003GL018174 Wang, 2019, Evaluating aerosol optical depth from Himawari‐8 with sun photometer network[J], J. Geophys. Res. Atmos., 124, 5516, 10.1029/2018JD028599 Wang, 2022, A full-coverage estimation of PM2. 5 concentrations using a hybrid XGBoost-WD model and WRF-simulated meteorological fields in the Yangtze River Delta Urban Agglomeration, China [J], Environ. Res., 203, 10.1016/j.envres.2021.111799 Wei, 2019, Estimating 1-km-resolution PM2. 5 concentrations across China using the space-time random forest approach [J], Rem. Sens. Environ., 231, 10.1016/j.rse.2019.111221 Wei, 2020, Improved 1 km resolution PM 2.5 estimates across China using enhanced space–time extremely randomized trees [J], Atmos. Chem. Phys., 20, 3273, 10.5194/acp-20-3273-2020 Xiao, 2017, Full-coverage high-resolution daily PM2. 5 estimation using MAIAC AOD in the Yangtze River Delta of China [J], Rem. Sens. Environ., 199, 437, 10.1016/j.rse.2017.07.023 Yang, 2020, Human activities and the natural environment have induced changes in the PM2.5 concentrations in Yunnan Province, China, over the past 19 years [J], Environ. Pollut., 265, 10.1016/j.envpol.2020.114878 Zeng, 2021, Estimating hourly surface PM2. 5 concentrations across China from high-density meteorological observations by machine learning [J], Atmos. Res., 254, 10.1016/j.atmosres.2021.105516 Zhai, 2018, An improved geographically weighted regression model for PM2. 5 concentration estimation in large areas [J], Atmos. Environ., 181, 145, 10.1016/j.atmosenv.2018.03.017 Zhang, 2018, A nonparametric approach to filling gaps in satellite-retrieved aerosol optical depth for estimating ambient PM2. 5 levels [J], Environ. Pollut., 243, 998, 10.1016/j.envpol.2018.09.052 Zhang, 2019, Ground-level PM2. 5 estimation over urban agglomerations in China with high spatiotemporal resolution based on Himawari-8[J], Sci. Total Environ., 676, 535, 10.1016/j.scitotenv.2019.04.299 Zheng, 2020, Estimating ground-level PM2. 5 using micro-satellite images by a convolutional neural network and random forest approach [J], Atmos. Environ., 230, 10.1016/j.atmosenv.2020.117451