High-precision estimation of hourly PM2.5 concentration based on a grid scale of satellite-derived products
Tài liệu tham khảo
Brokamp, 2018, Predicting daily urban fine particulate matter concentrations using a random forest model[J], Environ. Sci. Technol., 52, 4173, 10.1021/acs.est.7b05381
Cao, 2022, Investigation of COVID-19-related lockdowns on the air pollution changes in augsburg in 2020, Germany[J], Atmos. Pollut. Res., 13, 10.1016/j.apr.2022.101536
Chang, 2020, Explore spatio-temporal PM2. 5 features in northern Taiwan using machine learning techniques [J], Sci. Total Environ., 736, 10.1016/j.scitotenv.2020.139656
Chen, 2018, Spatiotemporal modeling of PM2. 5 concentrations at the national scale combining land use regression and Bayesian maximum entropy in China [J], Environ. Int., 116, 300, 10.1016/j.envint.2018.03.047
Chen, 2019, Extreme gradient boosting model to estimate PM2. 5 concentrations with missing-filled satellite data in China [J], Atmos. Environ., 202, 180, 10.1016/j.atmosenv.2019.01.027
Chu, 2016, A review on predicting ground PM2. 5 concentration using satellite aerosol optical depth, J. Atmos., 7, 129
Di, 2016, Assessing PM2. 5 exposures with high spatiotemporal resolution across the continental United States [J], Environ. Sci. Technol., 50, 4712, 10.1021/acs.est.5b06121
Ding, 2021, A CatBoost approach with wavelet decomposition to improve satellite-derived high-resolution PM2. 5 estimates in Beijing-Tianjin-Hebei[J], Atmos. Environ., 249, 10.1016/j.atmosenv.2021.118212
Feng, 2016, The health effects of ambient PM2.5 and potential mechanisms [J], Ecotoxicol. Environ. Saf., 128, 67, 10.1016/j.ecoenv.2016.01.030
Gündoğdu, 2022, Estimating daily PM2.5 concentrations using an extreme gradient boosting model based on VIIRS aerosol products over southeastern Europe[J], Air Quality, Atmosphere & Health, 15, 2185, 10.1007/s11869-022-01245-5
Guo, 2017, Impact of diurnal variability and meteorological factors on the PM2. 5-AOD relationship: implications for PM2. 5 remote sensing [J], Environ. Pollut., 221, 94, 10.1016/j.envpol.2016.11.043
Guo, 2021, Estimating PM2. 5 concentrations via random forest method using satellite, auxiliary, and ground-level station dataset at multiple temporal scales across China in 2017[J], Sci. Total Environ., 778, 10.1016/j.scitotenv.2021.146288
Guo, 2021, Estimating ground-level PM2. 5 concentrations using two-stage model in Beijing-Tianjin-Hebei, China[J], Atmos. Pollut. Res., 12, 10.1016/j.apr.2021.101154
He, 2022, Spatiotemporal PM2.5 estimations in China from 2015 to 2020 using an improved gradient boosting decision tree [J], Chemosphere, 10.1016/j.chemosphere.2022.134003
Hu, 2017, Estimating PM2. 5 concentrations in the conterminous United States using the random forest approach [J], Environ. Sci. Technol., 51, 6936, 10.1021/acs.est.7b01210
Huang, 2018, Predicting monthly high-resolution PM2. 5 concentrations with random forest model in the North China Plain [J], Environ. Pollut., 242, 675, 10.1016/j.envpol.2018.07.016
Ibrahim, 2022, Machine learning-based approach using open data to estimate PM2. 5 over europe[J], Rem. Sens., 14, 3392, 10.3390/rs14143392
Jiang, 2021, Estimation of hourly full-coverage PM2.5 concentrations at 1-km resolution in China using a two-stage random forest model [J], Atmos. Res., 248, 10.1016/j.atmosres.2020.105146
Kampa, 2008, Human health effects of air pollution [J], Environ. Pollut., 151, 362, 10.1016/j.envpol.2007.06.012
Kim, 2015, A review on the human health impact of airborne particulate matter [J, Environ. Int., 74, 136, 10.1016/j.envint.2014.10.005
Lou, 2016, Socioeconomic drivers of PM2. 5 in the accumulation phase of air pollution episodes in the Yangtze River Delta of China [J], Int. J. Environ. Res. Publ. Health, 13, 928, 10.3390/ijerph13100928
Lu, 2021, Estimation of monthly 1 km resolution PM2. 5 concentrations using a random forest model over “2+ 26” cities, China [J], Urban Clim., 35, 10.1016/j.uclim.2020.100734
Lu, 2021, Estimating hourly PM2. 5 concentrations using Himawari-8 AOD and a DBSCAN-modified deep learning model over the YRDUA, China [J], Atmos. Pollut. Res., 12, 183, 10.1016/j.apr.2020.10.020
Mengfan, 2022, Including the feature of appropriate adjacent sites improves the PM2. 5 concentration prediction with long short-term memory neural network model[J], Sustain. Cities Soc., 76, 10.1016/j.scs.2021.103427
Pope, 2011, Lung cancer and cardiovascular disease mortality associated with ambient air pollution and cigarette smoke: shape of the exposure-response relationships [J], Environ. Health Perspect., 119, 1616, 10.1289/ehp.1103639
Shao, 2020, Estimating daily ground-level PM2. 5 in China with random-forest-based spatiotemporal kriging[J], Sci. Total Environ., 740, 10.1016/j.scitotenv.2020.139761
Shi, 2016, Low-concentration PM2.5 and mortality: estimating acute and chronic effects in a population-based study [J], Environ. Health Perspect., 124, 46, 10.1289/ehp.1409111
Song, 2017, Health burden attributable to ambient PM2. 5 in China [J], Environ. Pollut., 223, 575, 10.1016/j.envpol.2017.01.060
Stafoggia, 2019, Estimation of daily PM10 and PM2. 5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model [J], Environ. Int., 124, 170, 10.1016/j.envint.2019.01.016
Tang, 2019, Comparison of GOCI and Himawari-8 aerosol optical depth for deriving full-coverage hourly PM2. 5 across the Yangtze River Delta [J], Atmos. Environ., 217, 10.1016/j.atmosenv.2019.116973
Teng, 2022, 24-Hour prediction of PM2. 5 concentrations by combining empirical mode decomposition and bidirectional long short-term memory neural network[J], Sci. Total Environ., 821, 10.1016/j.scitotenv.2022.153276
Wang, 2003, Intercomparison between satellite‐derived aerosol optical thickness and PM2. 5 mass: implications for air quality studies [J], Geophys. Res. Lett., 30, 10.1029/2003GL018174
Wang, 2019, Evaluating aerosol optical depth from Himawari‐8 with sun photometer network[J], J. Geophys. Res. Atmos., 124, 5516, 10.1029/2018JD028599
Wang, 2022, A full-coverage estimation of PM2. 5 concentrations using a hybrid XGBoost-WD model and WRF-simulated meteorological fields in the Yangtze River Delta Urban Agglomeration, China [J], Environ. Res., 203, 10.1016/j.envres.2021.111799
Wei, 2019, Estimating 1-km-resolution PM2. 5 concentrations across China using the space-time random forest approach [J], Rem. Sens. Environ., 231, 10.1016/j.rse.2019.111221
Wei, 2020, Improved 1 km resolution PM 2.5 estimates across China using enhanced space–time extremely randomized trees [J], Atmos. Chem. Phys., 20, 3273, 10.5194/acp-20-3273-2020
Xiao, 2017, Full-coverage high-resolution daily PM2. 5 estimation using MAIAC AOD in the Yangtze River Delta of China [J], Rem. Sens. Environ., 199, 437, 10.1016/j.rse.2017.07.023
Yang, 2020, Human activities and the natural environment have induced changes in the PM2.5 concentrations in Yunnan Province, China, over the past 19 years [J], Environ. Pollut., 265, 10.1016/j.envpol.2020.114878
Zeng, 2021, Estimating hourly surface PM2. 5 concentrations across China from high-density meteorological observations by machine learning [J], Atmos. Res., 254, 10.1016/j.atmosres.2021.105516
Zhai, 2018, An improved geographically weighted regression model for PM2. 5 concentration estimation in large areas [J], Atmos. Environ., 181, 145, 10.1016/j.atmosenv.2018.03.017
Zhang, 2018, A nonparametric approach to filling gaps in satellite-retrieved aerosol optical depth for estimating ambient PM2. 5 levels [J], Environ. Pollut., 243, 998, 10.1016/j.envpol.2018.09.052
Zhang, 2019, Ground-level PM2. 5 estimation over urban agglomerations in China with high spatiotemporal resolution based on Himawari-8[J], Sci. Total Environ., 676, 535, 10.1016/j.scitotenv.2019.04.299
Zheng, 2020, Estimating ground-level PM2. 5 using micro-satellite images by a convolutional neural network and random forest approach [J], Atmos. Environ., 230, 10.1016/j.atmosenv.2020.117451