High-power all-solid-state batteries using sulfide superionic conductors
Tóm tắt
Từ khóa
Tài liệu tham khảo
Scrosati, B. & Garche, J. Lithium batteries: status, prospects and future. J. Power Sources 195, 2419–2430 (2010).
Goodenough, J. Rechargeable batteries: challenges old and new. J. Solid State Electrochem. 16, 2019–2029 (2012).
Winter, M. & Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4269 (2004).
Seino, Y. et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 7, 627–631 (2014).
Wang, Y. et al. Design principles for solid-state lithium superionic conductors. Nature Mater. 14, 1026-1031 (2015).
Ohtomo, T. et al. All-solid-state lithium secondary batteries using the 75Li2S⋅25P2S5 glass and the 70Li2S⋅30P2S5 glass-ceramic as solid electrolytes. J. Power Sources 233, 231–235 (2013).
Kwon, O. et al. Synthesis, structure, and conduction mechanism of the lithium superionic conductor Li10+δGe1+δP2−δS12 . J. Mater. Chem. A 3, 438–446 (2015).
Hori, S. et al. Structure–property relationships in lithium superionic conductors having a Li10GeP2S12-type structure. Acta Crystallogr. B B71, 727–736 (2015).
Kanno, R. et al. A self-assembled breathing interface for all-solid-state ceramic lithium batteries. Electrochem. Solid-State Lett. 7, A455-A458 (2004).
Bron, P. et al. Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013).
Kuhn, A. et al. A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. Phys. Chem. Chem. Phys. 16, 14669–14674 (2014).
Hori, S. et al. Synthesis, structure, and ionic conductivity of solid solution, Li10+δ M1+δP2−δS12 (M = Si, Sn). Faraday Discuss. 176, 83–94 (2014).
Huang, W. & Frech, R. Vibrational spectroscopic and electrochemical studies of the low and high temperature phases of LiCo1−xMxO2 (M = Ni or Ti). Solid State Ion. 86–88, 395–400 (1996).
Ohta, S., Kobayashi, T., Seki, J. & Asaoka, T. Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J. Power Sources 202, 332–335 (2012).
Aoki, K., Baars, A., Jaworski, A. & Osteryoung, J. Chronoamperometry of strong acids without supporting electrolyte. J. Electroanal. Chem. 472, 1–6 (1999).
Wetjen, M., Kim, G.-T., Joost, M., Winter, M. & Passerini, S. Temperature dependence of electrochemical properties of cross-linked poly(ethylene oxide)–lithium bis(trifluoromethanesulfonyl)imide–N-butyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide solid polymer electrolytes for lithium batteries. Electrochim. Acta 87, 779–787 (2013).
Capiglia, C. et al. 7Li and 19F diffusion coefficients and thermal properties of non-aqueous electrolyte solutions for rechargeable lithium batteries. J. Power Sources 81–82, 859–862 (1999).
Abe, T., Fukuda, H., Iriyama, Y. & Ogumi, Z. Solvated Li-ion transfer at interface between graphite and electrolyte. J. Electrochem. Soc. 151, A1120–A1123 (2004).
Abe, T., Sagane, F., Ohtsuka, M., Iriyama, Y. & Ogumi, Z. Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte—A key to enhancing the rate capability of lithium-ion batteries. J. Electrochem. Soc. 152, A2151–A2154 (2005).
Choi, D. et al. Li-ion batteries from LiFePO4 cathode and anatase/graphene composite anode for stationary energy storage. Electrochem. Commun. 12, 378–381 (2010).
Lee, S. W. et al. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nature Nanotech. 5, 531–537 (2010).
Nagasubramanian, G. Electrical characteristics of 18650 Li-ion cells at low temperatures. J. Appl. Electrochem. 31, 99–104 (2001).
Cericola, D., Novák, P., Wokaun, A. & Köttz, R. Hybridization of electrochemical capacitors and rechargeable batteries: an experimental analysis of the different possible approaches utilizing activated carbon, Li4Ti5O12 and LiMn2O4 . J. Power Sources 196, 10305–10313 (2011).
Khomenko, V., Raymundo-Piñero, E. & Béguin, F. A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte. J. Power Sources 195, 4234–4241 (2010).
Zhang, J., Jiang, J., Li, H. & Zhao, X. S. A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy Environ. Sci. 4, 4009–4015 (2011).
Peng, H.-J. et al. Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries. Adv. Funct. Mater. 24, 2772–2781 (2014).
Imamura, D., Miyama, M., Hibino, M. & Kubo, T. Mg intercalation properties into V2O5 gel/carbon composites under high-rate condition. J. Electrochem. Soc. 150, A753–A758 (2003).
Li, S. et al. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv. Mater. 26, 3545–3553 (2014).
Ohta, N. et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv. Mater. 18, 2226–2229 (2006).
Maier, J. Nanoionics: ion transport and electrochemical storage in confined systems. Nature Mater. 4, 806–815 (2005).
Oishi, R. et al. Rietveld analysis software for J-PARC. Nucl. Instrum. Methods Phys. Res. A 600, 94–96 (2009).
Ishikawa, Y. et al. Z-MEM & Z-3D, maximum entropy method and visualization software for electron/nuclear density distribution in Z-Code. In ICANS XXI DAA-P08 (J-PARC, 2014).
Sakata, M. & Sato, M. Accurate structure analysis by the maximum-entropy method. Acta Crystallogr. A 46, 263–270 (1990).
Ishikawa, Y., Yonemura, M. & Kamiyama, T. Z-3D, Textbook of Z-code Powder Diffraction Data Analysis School (KEK, 2014).