High-power all-solid-state batteries using sulfide superionic conductors

Nature Energy - Tập 1 Số 4
Yoshifumi Kato1, Satoshi Hori2, Toshiya Saito1, Kota Suzuki2, Masaaki Hirayama2, Akio Mitsui3, Masao Yonemura4, Hideki Iba1, Ryoji Kanno2
1Battery Research Division, Higashifuji Technical Center, Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193, Japan
2Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502, Japan
3Material analysis Department, Material Engineering Division, Toyota Motor Corporation, 1 Toyota-cho, Toyota, Aichi 471-8572, Japan
4Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization (KEK), Shirakata, Tokai, Ibaraki 319-1106, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nature Mater. 7, 845–854 (2008).

Scrosati, B. & Garche, J. Lithium batteries: status, prospects and future. J. Power Sources 195, 2419–2430 (2010).

Goodenough, J. Rechargeable batteries: challenges old and new. J. Solid State Electrochem. 16, 2019–2029 (2012).

Winter, M. & Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4269 (2004).

Robinson, A. L. & Janek, J. Solid-state batteries enter EV fray. MRS Bull. 39, 1046–1047 (2014).

Seino, Y. et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 7, 627–631 (2014).

Kamaya, N. et al. A lithium superionic conductor. Nature Mater. 10, 682–686 (2011).

Wang, Y. et al. Design principles for solid-state lithium superionic conductors. Nature Mater. 14, 1026-1031 (2015).

Ohtomo, T. et al. All-solid-state lithium secondary batteries using the 75Li2S⋅25P2S5 glass and the 70Li2S⋅30P2S5 glass-ceramic as solid electrolytes. J. Power Sources 233, 231–235 (2013).

Kwon, O. et al. Synthesis, structure, and conduction mechanism of the lithium superionic conductor Li10+δGe1+δP2−δS12 . J. Mater. Chem. A 3, 438–446 (2015).

Hori, S. et al. Structure–property relationships in lithium superionic conductors having a Li10GeP2S12-type structure. Acta Crystallogr. B B71, 727–736 (2015).

Kanno, R. et al. A self-assembled breathing interface for all-solid-state ceramic lithium batteries. Electrochem. Solid-State Lett. 7, A455-A458 (2004).

Bron, P. et al. Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013).

Kuhn, A. et al. A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. Phys. Chem. Chem. Phys. 16, 14669–14674 (2014).

Hori, S. et al. Synthesis, structure, and ionic conductivity of solid solution, Li10+δ M1+δP2−δS12 (M = Si, Sn). Faraday Discuss. 176, 83–94 (2014).

Huang, W. & Frech, R. Vibrational spectroscopic and electrochemical studies of the low and high temperature phases of LiCo1−xMxO2 (M = Ni or Ti). Solid State Ion. 86–88, 395–400 (1996).

Ohta, S., Kobayashi, T., Seki, J. & Asaoka, T. Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J. Power Sources 202, 332–335 (2012).

Aoki, K., Baars, A., Jaworski, A. & Osteryoung, J. Chronoamperometry of strong acids without supporting electrolyte. J. Electroanal. Chem. 472, 1–6 (1999).

Wetjen, M., Kim, G.-T., Joost, M., Winter, M. & Passerini, S. Temperature dependence of electrochemical properties of cross-linked poly(ethylene oxide)–lithium bis(trifluoromethanesulfonyl)imide–N-butyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide solid polymer electrolytes for lithium batteries. Electrochim. Acta 87, 779–787 (2013).

Capiglia, C. et al. 7Li and 19F diffusion coefficients and thermal properties of non-aqueous electrolyte solutions for rechargeable lithium batteries. J. Power Sources 81–82, 859–862 (1999).

Abe, T., Fukuda, H., Iriyama, Y. & Ogumi, Z. Solvated Li-ion transfer at interface between graphite and electrolyte. J. Electrochem. Soc. 151, A1120–A1123 (2004).

Abe, T., Sagane, F., Ohtsuka, M., Iriyama, Y. & Ogumi, Z. Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte—A key to enhancing the rate capability of lithium-ion batteries. J. Electrochem. Soc. 152, A2151–A2154 (2005).

Choi, D. et al. Li-ion batteries from LiFePO4 cathode and anatase/graphene composite anode for stationary energy storage. Electrochem. Commun. 12, 378–381 (2010).

Lee, S. W. et al. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nature Nanotech. 5, 531–537 (2010).

Nagasubramanian, G. Electrical characteristics of 18650 Li-ion cells at low temperatures. J. Appl. Electrochem. 31, 99–104 (2001).

Cericola, D., Novák, P., Wokaun, A. & Köttz, R. Hybridization of electrochemical capacitors and rechargeable batteries: an experimental analysis of the different possible approaches utilizing activated carbon, Li4Ti5O12 and LiMn2O4 . J. Power Sources 196, 10305–10313 (2011).

Khomenko, V., Raymundo-Piñero, E. & Béguin, F. A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte. J. Power Sources 195, 4234–4241 (2010).

Zhang, J., Jiang, J., Li, H. & Zhao, X. S. A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy Environ. Sci. 4, 4009–4015 (2011).

Gallant, B. M. et al. The Lithium Air Battery 121–158 (Springer, 2014).

Peng, H.-J. et al. Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries. Adv. Funct. Mater. 24, 2772–2781 (2014).

Imamura, D., Miyama, M., Hibino, M. & Kubo, T. Mg intercalation properties into V2O5 gel/carbon composites under high-rate condition. J. Electrochem. Soc. 150, A753–A758 (2003).

Lin, M.-C. et al. An ultrafast rechargeable aluminium-ion battery. Nature 520, 324–328 (2015).

Li, S. et al. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv. Mater. 26, 3545–3553 (2014).

Ohta, N. et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv. Mater. 18, 2226–2229 (2006).

Maier, J. Nanoionics: ion transport and electrochemical storage in confined systems. Nature Mater. 4, 806–815 (2005).

Oishi, R. et al. Rietveld analysis software for J-PARC. Nucl. Instrum. Methods Phys. Res. A 600, 94–96 (2009).

Ishikawa, Y. et al. Z-MEM & Z-3D, maximum entropy method and visualization software for electron/nuclear density distribution in Z-Code. In ICANS XXI DAA-P08 (J-PARC, 2014).

Sakata, M. & Sato, M. Accurate structure analysis by the maximum-entropy method. Acta Crystallogr. A 46, 263–270 (1990).

Ishikawa, Y., Yonemura, M. & Kamiyama, T. Z-3D, Textbook of Z-code Powder Diffraction Data Analysis School (KEK, 2014).

Ohta, N. et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem. Commun. 9, 1486–1490 (2007).