High piezoelectric sensitivity and hydrostatic figures of merit in unidirectional porous ferroelectric ceramics fabricated by freeze casting
Tài liệu tham khảo
Xie, 2017, A modified gelcasting approach to fabricate microscale randomized 1-3 piezoelectric arrays, Ceram. Int., 43, 144, 10.1016/j.ceramint.2016.09.123
Bowen, 2000, Impedance spectroscopy of piezoelectric actuators, Scr. Mater., 42, 813, 10.1016/S1359-6462(00)00300-6
Bowen, 2004, Processing and properties of porous piezoelectric materials with high hydrostatic figures of merit, J. Eur. Ceram. Soc., 24, 541, 10.1016/S0955-2219(03)00194-8
Ting, 1991, A review on the development of piezoelectric composites for underwater acoustic transducer applications, conference record, 410
Kara, 2003, Porous PZT ceramics for receiving transducers, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 50, 289, 10.1109/TUFFC.2003.1193622
Safari, 1987, 0–3 piezoelectric composites prepared by coprecipitated PbTiO3 powder, Am. Ceram. Soc. Bull., 66, 668
Li, 2012, Piezoelectric materials used in underwater acoustic transducers, Sens. Lett., 10, 679, 10.1166/sl.2012.2597
Priya, 2010, Criterion for material selection in design of bulk piezoelectric energy harvesters, IEEE Ultrason. Ferroelectr. Freq. Control, 57, 10.1109/TUFFC.2010.1734
Katsuyoshi, 1994, Hydrophone sensitivity of porous Pb(Zr, Ti)O3 ceramics, Jpn. J. Appl. Phys., 33, 5381, 10.1143/JJAP.33.5381
Chen, 2004, Piezoelectric composites with 3-3 connectivity by injecting polymer for hydrostatic sensors, Ceram. Int., 30, 69, 10.1016/S0272-8842(03)00064-6
Della, 2008, The performance of 1–3 piezoelectric composites with a porous non-piezoelectric matrix, Acta Mater., 56, 754, 10.1016/j.actamat.2007.10.022
McCall, 2014, Piezoelectric nanoparticle–polymer composite foams, ACS Appl. Mater. Interfaces, 6, 19504, 10.1021/am506415y
Ou, 2016, Template-assisted hydrothermal growth of aligned zinc oxide nanowires for piezoelectric energy harvesting applications, ACS Appl. Mater. Interfaces, 8, 13678, 10.1021/acsami.6b04041
Zhou, 2013, Vertically aligned arrays of BaTiO3 nanowires, ACS Appl. Mater. Interfaces, 5, 11894, 10.1021/am403587q
Yan, 2016, High performance flexible piezoelectric nanogenerators based on BaTiO3 nanofibers in different alignment modes, ACS Appl. Mater. Interfaces, 8, 15700, 10.1021/acsami.6b02177
Castro, 2016, Block copolymer-assisted nanopatterning of porous lead titanate thin films for advanced electronics, J. Phys. Chem. C, 120, 10961, 10.1021/acs.jpcc.6b02581
Jackson, 1988, The mechanical design of nacre, Proc. R. Soc. Lond. Ser. B: Biol. Sci., 234, 415, 10.1098/rspb.1988.0056
Flauder, 2015, Mechanical properties of porous β-tricalcium phosphate composites prepared by ice-templating and poly(ε-caprolactone) impregnation, ACS Appl. Mater. Interfaces, 7, 845, 10.1021/am507333q
Bouville, 2014, Templated grain growth in macroporous materials, J. Am. Ceram. Soc., 97, 1736, 10.1111/jace.12976
Stolze, 2016, Investigation of ice-templated porous electrodes for application in organic batteries, ACS Appl. Mater. Interfaces, 8, 23614, 10.1021/acsami.6b05018
Gorzkowski, 2011, Prototype capacitor produced by freeze tape-casting, 1
Lee, 2008, Piezoelectric properties of PZT-based ceramic with highly aligned pores, J. Am. Ceram. Soc., 91, 1912, 10.1111/j.1551-2916.2008.02359.x
Lee, 2007, Fabrication of porous PZT–PZN piezoelectric ceramics with high hydrostatic figure of merits using camphene-based freeze casting, J. Am. Ceram. Soc., 90, 2807, 10.1111/j.1551-2916.2007.01834.x
Guo, 2011, Effects of pore size and orientation on dielectric and piezoelectric properties of 1–3 type porous PZT ceramics, J. Eur. Ceram. Soc., 31, 605, 10.1016/j.jeurceramsoc.2010.10.019
Guo, 2011, Piezoelectric properties of the 1–3 type porous lead zirconate titanate ceramics, J. Am. Ceram. Soc., 94, 1794, 10.1111/j.1551-2916.2010.04294.x
Xu, 2015, Grain orientation and domain configuration in 3-1 type porous PZT ceramics with ultrahigh piezoelectric properties, J. Am. Ceram. Soc., 98, 2700, 10.1111/jace.13725
Wang, 2016, Ultralow electrical percolation in graphene aerogel/epoxy composites, Chem. Mater., 28, 6731, 10.1021/acs.chemmater.6b03206
Xu, 2016, Effect of two-step sintering on micro-honeycomb BaTiO3 ceramics prepared by freeze-casting process, J. Eur. Ceram. Soc., 36, 2647, 10.1016/j.jeurceramsoc.2016.03.032
Xu, 2015, Synthesis and magnetoelectric effect of composites with CoFe2O4-epoxy embedded in 3–1 type porous PZT ceramics, Ceram. Int., 41, 11080, 10.1016/j.ceramint.2015.05.054
Zhu, 2017, Enhanced piezoelectric properties of 3-1 type porous 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ferroelectric ceramics, J. Eur. Ceram. Soc., 38, 2251, 10.1016/j.jeurceramsoc.2017.10.033
Fukushima, 2017, One- or two-dimensional channel structures and properties of piezoelectric composites via freeze-casting, J. Am. Ceram. Soc., 100, 5400, 10.1111/jace.15086
Yang, 2010, Porous PZT ceramics with high hydrostatic figure of merit and low acoustic impedance by TBA-based gel-casting process, J. Am. Ceram. Soc., 93, 1427
Yang, 2010, Effects of sintering behavior on microstructure and piezoelectric properties of porous PZT ceramics, Ceram. Int., 36, 549, 10.1016/j.ceramint.2009.09.022
Jiang, 2016, K0.5Na0.5NbO3 piezoelectric ceramics and its composites fabricated from hydrothermal powders
Gorzkowski, 2009, Barium titanate-polymer composites produced via directional freezing, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56, 1613, 10.1109/TUFFC.2009.1225
Zhou, 2009, Novel piezoelectric ceramic-polymer aligned composites via the freeze casting method for high frequency transducer applications
Liu, 2017, Effects of slurry composition on the properties of 3-1 type porous PZT ceramics prepared by ionotropic gelation, Ceram. Int., 43, 6542, 10.1016/j.ceramint.2017.02.079
Liu, 2014, Lamellar BaTiO3 and its composites fabricated by the freeze casting technique, J. Eur. Ceram. Soc., 34, 4083, 10.1016/j.jeurceramsoc.2014.05.043
Li, 2014, Kaolinite as a suspending agent for preparation of porous BaTiO3 ceramics via freeze casting, J. Electron. Mater., 43, 459, 10.1007/s11664-013-2827-1
Dong Seok Kim, 2016, Enhanced dielectric permittivity of BaTiO3/epoxy resin composites by particle alignment, Ceram. Int., 42, 7141, 10.1016/j.ceramint.2016.01.103
Benelli, 2017, High toxicity of camphene and γ-elemene from Wedelia prostrata essential oil against larvae of Spodoptera litura (Lepidoptera: Noctuidae), Environ. Sci. Pollut. Res., 25, 10383, 10.1007/s11356-017-9490-7
Cirvello, 1995, Toxicity and carcinogenicity of t-butyl alcohol in rats and mice following chronic exposure in drinking water, Toxicol. Ind. Health, 11, 151, 10.1177/074823379501100203
Schmidt, 2004, Microbial degradation of methyl tert-butyl ether and tert-butyl alcohol in the subsurface, J. Contam. Hydrol., 70, 173, 10.1016/j.jconhyd.2003.09.001
Sgambato, 2009, Differential toxic effects of methyl tertiary butyl ether and tert-butanol on rat fibroblasts in vitro, Toxicol. Ind. Health, 25, 141, 10.1177/0748233709104867
Chang, 2010, Laminate composites with enhanced pyroelectric effects for energy harvesting, Smart Mater. Struct., 19, 065018, 10.1088/0964-1726/19/6/065018
Topolov, 2010, Hydrostatic piezoelectric coefficients of the 2–2 composite based on [011]-poled 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystal, Ferroelectrics, 400, 410, 10.1080/00150193.2010.505888
Roscow, 2015, Porous ferroelectrics for energy harvesting applications, Eur. Phys. J. Spec. Top., 224, 2949, 10.1140/epjst/e2015-02600-y
Zhang, 2017, Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications, J. Mater. Chem. A, 5, 6569, 10.1039/C7TA00967D
Zhang, 2015, Effect of orthorhombic-tetragonal phase transition on structure and piezoelectric properties of KNN-based lead-free ceramics, Dalton Trans., 44, 7797, 10.1039/C5DT00593K
Zhou, 2011, Porous hydroxyapatite ceramics fabricated by an ice-templating method, Scr. Mater., 64, 426, 10.1016/j.scriptamat.2010.11.001
Zhang, 2013, Effects of rheological properties on ice-templated porous hydroxyapatite ceramics, Mater. Sci. Eng. C, 33, 340, 10.1016/j.msec.2012.08.048
Lasalle, 2012, Particle redistribution and structural defect development during ice templating, Acta Mater., 60, 4594, 10.1016/j.actamat.2012.02.023
Moritz, 2007, Ice-mould freeze casting of porous ceramic components, J. Eur. Ceram. Soc., 27, 4595, 10.1016/j.jeurceramsoc.2007.04.010
Deville, 2007, Ice-templated porous alumina structures, Acta Mater., 55, 1965, 10.1016/j.actamat.2006.11.003
Deville, 2010, Freeze-casting of porous biomaterials: structure, properties and opportunities, Materials, 3, 1913, 10.3390/ma3031913
Zou, 2011, Effect of suspension state on the pore structure of freeze-cast ceramics, Int. J. Appl. Ceram. Technol., 8, 482, 10.1111/j.1744-7402.2009.02458.x
Bowen, 2014, Manufacture and characterization of conductor-insulator composites based on carbon nanotubes and thermally reduced graphene oxide, Pure Appl. Chem., 86, 765, 10.1515/pac-2013-1207
Bai, 2015, Bioinspired large-scale aligned porous materials assembled with dual temperature gradients, Sci. Adv., 1, e1500849, 10.1126/sciadv.1500849
Nagata, 1980, Effects of porosity and grain size on hysteresis loops of piezoelectric ceramics (Pb-La) (Zr-Ti)O3, Electr. Eng. Jpn., 100, 1, 10.1002/eej.4391000402
Roscow, 2017, Modelling and fabrication of porous sandwich layer barium titanate with improved piezoelectric energy harvesting figures of merit, Acta Mater., 128, 207, 10.1016/j.actamat.2017.02.029
Bowen, 2002, Pore anisotropy in 3–3 piezoelectric composites, Mater. Chem. Phys., 75, 45, 10.1016/S0254-0584(02)00028-7
Rybyanets, 2011, Porous piezoceramics: theory, technology, and properties, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58, 1492, 10.1109/TUFFC.2011.1968
Tan, 2016, Microstructures, dielectric and piezoelectric properties of unannealed and annealed porous 0.36BiScO3-0.64PbTiO3 ceramics, J. Mater. Sci., 51, 5092, 10.1007/s10853-016-9812-z
Roscow, 2018, Freeze cast porous barium titanate for enhanced piezoelectric energy harvesting, J. Phys. D: Appl. Phys., 10.1088/1361-6463/aabc81
Bowen, 2003, Piezoelectric sensitivity of PbTiO3-based ceramic/polymer composites with 0–3 and 3–3 connectivity, Acta Mater., 51, 4965, 10.1016/S1359-6454(03)00283-0
Zeng, 2006, The effects of sintering behavior on piezoelectric properties of porous PZT ceramics for hydrophone application, Mater. Sci. Eng. B, 131, 181, 10.1016/j.mseb.2006.04.009
Zeng, 2007, Processing and piezoelectric properties of porous PZT ceramics, Ceram. Int., 33, 395, 10.1016/j.ceramint.2005.09.022
Chen, 2007, The mechanical and electric properties of infiltrated PZT/polymer composites, Ceram. Int., 33, 1369, 10.1016/j.ceramint.2006.05.010
Klicker, 1982, Piezoelectric composites with 3–1 connectivity and a foamed polyurethane matrix, J. Am. Ceram. Soc., 65, C-208, 10.1111/j.1151-2916.1982.tb09953.x
Newnham, 1980, Composite piezoelectric transducers, Mater. Des., 2, 93, 10.1016/0261-3069(80)90019-9
Klicker, 1981, Composites of PZT and epoxy for hydrostatic transducer applications, J. Am. Ceram. Soc., 64, 5, 10.1111/j.1151-2916.1981.tb09549.x
Sun, 2008, Development of novel (2–2) piezoelectric composites by direct-write technique, 1
Mirza, 2015, Dielectric and piezoelectric properties of piezoceramic/polymer 1–3 composites fabricated by a modified align-and-fill technique, Mater. Chem. Phys., 149, 670, 10.1016/j.matchemphys.2014.11.025
Chaipanich, 2013, Dielectric and piezoelectric properties of 2–2 PZT-Portland cement composites, Integr. Ferroelectr., 149, 89, 10.1080/10584587.2013.853574
Bowen, 2006, Modelling the ‘universal’ dielectric response in heterogeneous materials using microstructural electrical networks, Mater. Sci. Technol., 22, 719, 10.1179/174328406X101328
Kingery, 1976