High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces

Energy and Environmental Science - Tập 12 Số 2 - Trang 684-692
Feifan Guo1,2,3,4,5, Yuanyuan Wu1,2,3,4,5, Hui Chen1,2,3,4,5, Yipu Liu1,2,3,4,5, Yang Li6,7,8,9,10, Xuan Ai1,2,3,4,5, Xiaoxin Zou1,2,3,4,5
1Changchun 130012
2College of Chemistry
3Jilin University
4P. R. China
5State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China
6Dalian 116023
7Dalian Institute of Chemical Physics
8State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Dalian 116023 P. R. China
9University of Chinese Academy of Sciences
10University of Chinese Academy of Sciences, Beijing 100049, P.R. China

Tóm tắt

An effective boronization strategy is presented for transforming metal sheets into highly intrinsic active, stable and corrosion-resistant oxygen evolution electrodes.

Từ khóa


Tài liệu tham khảo

Seh, 2017, Science, 355, 146, 10.1126/science.aad4998

Zou, 2015, Chem. Soc. Rev., 44, 5148, 10.1039/C4CS00448E

Suen, 2017, Chem. Soc. Rev., 46, 337, 10.1039/C6CS00328A

Diaz-Morales, 2016, Nat. Commun., 7, 12363, 10.1038/ncomms12363

Seitz, 2016, Science, 353, 1011, 10.1126/science.aaf5050

Kim, 2017, J. Am. Chem. Soc., 139, 12076, 10.1021/jacs.7b06808

Suntivich, 2011, Science, 334, 1383, 10.1126/science.1212858

Grimaud, 2013, Nat. Commun., 4, 2439, 10.1038/ncomms3439

Gong, 2013, J. Am. Chem. Soc., 135, 8452, 10.1021/ja4027715

Zou, 2013, J. Am. Chem. Soc., 135, 17242, 10.1021/ja407174u

Fan, 2016, Nat. Commun., 7, 11981, 10.1038/ncomms11981

Liu, 2017, Adv. Mater., 29, 1701546, 10.1002/adma.201701546

Zhang, 2016, Science, 352, 333, 10.1126/science.aaf1525

Smith, 2013, Science, 340, 60, 10.1126/science.1233638

McCrory, 2015, J. Am. Chem. Soc., 137, 4347, 10.1021/ja510442p

Stern, 2015, Energy Environ. Sci., 8, 2347, 10.1039/C5EE01155H

Xu, 2015, J. Am. Chem. Soc., 137, 4119, 10.1021/ja5119495

Feng, 2015, J. Am. Chem. Soc., 137, 14023, 10.1021/jacs.5b08186

Liu, 2018, Nat. Commun., 9, 2609, 10.1038/s41467-018-05019-5

Lee, 2012, J. Phys. Chem. Lett., 3, 399, 10.1021/jz2016507

Stoerzinger, 2014, J. Phys. Chem. Lett., 5, 1636, 10.1021/jz500610u

Chen, 2017, Adv. Funct. Mater., 27, 1700795, 10.1002/adfm.201700795

Zeng, 2010, Prog. Energy Combust. Sci., 36, 307, 10.1016/j.pecs.2009.11.002

Pletcher, 2011, Int. J. Hydrogen Energy, 36, 15089, 10.1016/j.ijhydene.2011.08.080

Caputo, 2010, Inorg. Chem., 49, 8756, 10.1021/ic100896a

Carenco, 2013, Chem. Rev., 113, 7981, 10.1021/cr400020d

Martini, 2004, J. Mater. Sci., 39, 933, 10.1023/B:JMSC.0000012924.74578.87

Subbaraman, 2012, Nat. Mater., 11, 550, 10.1038/nmat3313

Yan, 2018, Nat. Commun., 9, 2373, 10.1038/s41467-018-04788-3

Johnston, 1990, Appl. Spectrosc., 44, 105, 10.1366/0003702904085769

Avendaño, 2005, J. Electrochem. Soc., 152, F203, 10.1149/1.2077308

Jiang, 2018, Nat. Commun., 9, 2885, 10.1038/s41467-018-05341-y

Trzesniewski, 2015, J. Am. Chem. Soc., 137, 15112, 10.1021/jacs.5b06814

Okamoto, 1979, J. Chem. Soc., Faraday Trans. 1, 75, 2027, 10.1039/f19797502027

Chen, 2017, Nano Lett., 17, 429, 10.1021/acs.nanolett.6b04427

Görlin, 2017, J. Am. Chem. Soc., 139, 2070, 10.1021/jacs.6b12250

Li, 2017, Proc. Natl. Acad. Sci. U. S. A., 114, 1486, 10.1073/pnas.1620787114

Bediako, 2013, J. Am. Chem. Soc., 135, 3662, 10.1021/ja3126432

Burke, 2015, J. Am. Chem. Soc., 137, 3638, 10.1021/jacs.5b00281

Smith, 2017, Nat. Commun., 8, 2022, 10.1038/s41467-017-01949-8

Fidelsky, 2016, J. Phys. Chem. C, 120, 25405, 10.1021/acs.jpcc.6b07931

Kuznetsov, 2018, Joule, 2, 225, 10.1016/j.joule.2017.11.014

Trotochaud, 2014, J. Am. Chem. Soc., 136, 6744, 10.1021/ja502379c

Friebel, 2015, J. Am. Chem. Soc., 137, 1305, 10.1021/ja511559d

Ahn, 2016, J. Am. Chem. Soc., 138, 313, 10.1021/jacs.5b10977

Wei, 2017, Adv. Mater., 29, 1606800, 10.1002/adma.201606800

Sun, 2018, Joule, 2, 1024, 10.1016/j.joule.2018.05.003

Sun, 2014, Appl. Surf. Sci., 295, 94, 10.1016/j.apsusc.2014.01.011

Lu, 2015, Appl. Surf. Sci., 355, 350, 10.1016/j.apsusc.2015.07.138

Chen, 2016, Angew. Chem., Int. Ed., 55, 2488, 10.1002/anie.201511032

Jiang, 2017, Angew. Chem., Int. Ed., 56, 6572, 10.1002/anie.201703183

Masa, 2017, Adv. Energy Mater., 7, 1700381, 10.1002/aenm.201700381

Li, 2017, Adv. Energy Mater., 7, 1700513, 10.1002/aenm.201700513

Nsanzimana, 2018, Adv. Energy Mater., 8, 1701475, 10.1002/aenm.201701475

Jiang, 2017, Nano Energy, 38, 175, 10.1016/j.nanoen.2017.05.045

Zhu, 2017, Nanoscale, 9, 12343, 10.1039/C7NR04344A

Balogun, 2017, Adv. Mater., 29, 1702095, 10.1002/adma.201702095

Schäfer, 2015, Energy Environ. Sci., 8, 2685, 10.1039/C5EE01601K

Schalenbach, 2018, Int. J. Electrochem. Sci., 13, 1173, 10.20964/2018.02.26