High-performance lithium battery anodes using silicon nanowires

Nature Nanotechnology - Tập 3 Số 1 - Trang 31-35 - 2008
Candace K. Chan1, Hailin Peng2, Gao Liu3, Kevin McIlwrath4, Qian Zhang4, Robert A. Huggins2, Yi Cui2
1Department of Chemistry Stanford University Stanford USA
2Stanford University
3Lawrence Berkeley National Laboratory
4Hitachi High Technologies America

Tóm tắt

Từ khóa


Tài liệu tham khảo

Nazri, G.-A. & Pistoia, G. Lithium Batteries: Science and Technology (Kluwer Academic/Plenum, Boston, 2004).

Boukamp, B. A., Lesh, G. C. & Huggins, R. A. All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc. 128, 725–729 (1981).

Shodai, T., Okada, S., Tobishima, S. & Yamaki, J. Study of Li3–xMxN (M:Co, Ni or Cu) system for use as anode material in lithium rechargeable cells. Solid State Ionics 86–88, 785–789 (1996).

Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J.-M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000).

Kasavajjula, U., Wang, C. & Appleby, A. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163, 1003–1039 (2007).

Green, M., Fielder, E., Scrosati, B., Wachtler, M. & Moreno, J. S. Structured silicon anodes for lithium battery applications. Electrochem. Solid-State Lett. 6, A75–A79 (2003).

Ryu, J. H., Kim, J. W., Sung, Y.-E. & Oh, S. M. Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid-State Lett. 7, A306–A309 (2004).

Graetz, J., Ahn, C. C., Yazami, R. & Fultz, B. Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 6, A194–A197 (2003).

Gao, B., Sinha, S., Fleming, L. & Zhou, O. Alloy formation in nanostructured silicon. Adv. Mater. 13, 816–819 (2001).

Che, G., Lakshmi, B. B., Fisher, E. R. & Martin, C. R. Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393, 346–349 (1998).

Nam, K. T. et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885–888 (2006).

Shaju, K. M., Jiao, F., Debart, A. & Bruce, P. G. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 9, 1837–1842 (2007).

Park, M.-S. et al. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. Int. Edn 46, 750–753 (2007).

Armstrong, G., Armstrong, A. R., Bruce, P. G., Reale, P. & Scrosati, B. TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Adv. Mater. 18, 2597–2600 (2006).

Li, N., Patrissi, C. J., Che, G. & Martin, C. R. Rate capabilities of nanostructured LiMn2O4 electrodes in aqueous electrolyte. J. Electrochem. Soc. 147, 2044–2049 (2000).

Yang, J., Winter, M. & Besenhard, J. O. Small particle size multiphase Li-alloy anodes for lithium-ion batteries. Solid State Ionics 90, 281–287 (1996).

Huggins, R. A. & Nix, W. D. Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57–63 (2000).

Morales, A. M. & Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208–211 (1998).

Huang, M. H. et al. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113–116 (2001).

Dick, K. A. et al. A new understanding of Au-assisted growth of III-V semiconductor nanowires. Adv. Funct. Mater. 15, 1603–1610 (2005).

Pan, Z. W., Dai, Z. R. & Wang, Z. L. Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001).

Wang, Y., Schmidt, V., Senz, S. & Gosele, U. Epitaxial growth of silicon nanowires using an aluminum catalyst. Nature Nanotech. 1, 186–189 (2006).

Hannon, J. B., Kodambaka, S., Ross, F. M. & Tromp, R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69–71 (2006).

Netz, A., Huggins, R. A. & Weppner, W. The formation and properties of amorphous silicon as negative electrode reactant in lithium systems. J. Power Sources 119–121, 95–100 (2003).

Li, J. & Dahn, J. R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 154, A156–A161 (2007).

Obrovac, M. N. & Krause, L. J. Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103–A108 (2007).

Hatchard, T. D. & Dahn, J. R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151, A838–A842 (2004).

Lee, Y. M., Lee, J. Y., Shim, H.-T., Lee, J. K. & Park, J.-K. SEI layer formation on amorphous Si thin electrode during precycling. J. Electrochem. Soc. 154, A515–A519 (2007).

Wu, Y. et al. Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4, 433–436 (2004).