Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Cảm biến biến dạng sợi hiệu suất cao với lớp cảm biến synergistic cho nhận diện chuyển động của con người và điều khiển robot
Tóm tắt
Với sự phát triển của các thiết bị điện tử linh hoạt và công nghệ Internet of Things, cảm biến biến dạng linh hoạt đã cho thấy tiềm năng ứng dụng to lớn. Phạm vi hoạt động và độ nhạy phản hồi là hai tham số chính để đánh giá hiệu suất của cảm biến biến dạng linh hoạt. Tuy nhiên, việc kết hợp giữa phạm vi làm việc rộng và độ nhạy phản hồi cao vẫn là một thách thức nổi bật đối với cảm biến biến dạng linh hoạt. Trong nghiên cứu này, một cảm biến biến dạng sợi CNT@TPU (CTFSS) với lớp cảm biến synergistic đã được chế tạo bằng phương pháp electrospinning và phun. Nhờ vào lớp cảm biến synergistic được cấu thành từ lớp CNT liên tục ổn định và lớp CNT cấu trúc nứt, CTFSS chế tạo được thể hiện độ nhạy phản hồi cao (hệ số đo lớn nhất, GFmax = 8.9 × 104) trong phạm vi hoạt động rộng từ 0 đến 630%, thời gian đáp ứng/phục hồi nhanh 120/150 ms, cũng như độ ổn định cảm biến và độ bền tốt qua hơn 10,000 chu kỳ. Kết quả là, nó có thể được sử dụng để theo dõi biến dạng nhỏ như xung và rung dây thanh âm, cũng như phát hiện biến dạng lớn của con người như đi bộ, chạy, gập ngón tay và gập khuỷu tay. Ngoài ra, một găng tay dữ liệu đã được lắp ráp dựa trên CTFSS và được sử dụng cho nhận diện ngôn ngữ ký hiệu và kiểm tra điều khiển cơ học của lòng bàn tay, cho thấy triển vọng ứng dụng rộng rãi trong nhận diện ngôn ngữ ký hiệu thông minh và điều khiển từ xa các robot. Quan trọng là, màng sợi CNT@TPU thu được cũng sở hữu khả năng gia nhiệt Joule và gia nhiệt quang vượt trội, giúp CTFSS có khả năng quản lý nhiệt cá nhân hiệu quả cao trong các môi trường khắc nghiệt.
Từ khóa
#cảm biến biến dạng #CNT@TPU #công nghệ điện tử linh hoạt #nhận diện chuyển động #điều khiển robot #lớp cảm biến synergisticTài liệu tham khảo
Yang J, Zhang Z, Zhou P et al (2023) Toward a new generation of permeable skin electronics. Nanoscale 15:3051. https://doi.org/10.1039/d2nr06236d
Qi M, Yang R, Wang Z et al (2023) Bioinspired self-healing soft electronics. Adv Funct Mater 33:2214479. https://doi.org/10.1002/adfm.202214479
Zhang Y, Zhou J, Zhang Y, Zhang D, Yong KT, Xiong J (2022) Elastic fibers/fabrics for wearables and bioelectronics. Adv Sci 9:2203808. https://doi.org/10.1002/advs.202203808
Li H, Zhang D, Wang C, Hao Y, Zhang Y, Li Y, Bao P, Wu H (2023) 3D extruded graphene thermoelectric threads for self-powered oral health monitoring. Small 2300908. https://doi.org/10.1002/smll.202300908
Xiao J, Xiong Y, Chen J, Zhao S, Chen S, Xu B, Sheng B (2022) Ultrasensitive and highly stretchable fibers with dual conductive microstructural sheaths for human motion and micro vibration sensing. Nanoscale 14:1962. https://doi.org/10.1039/d1nr08380e
Lei M, Feng K, Ding S et al (2022) Breathable and waterproof electronic skin with three-dimensional architecture for pressure and strain sensing in nonoverlapping mode. ACS Nano 16:12620. https://doi.org/10.1021/acsnano.2c04188
Yuan Y, Liu B, Li H, Li M, Song Y, Wang R, Wang T, Zhang H (2022) Flexible wearable sensors in medical monitoring. Biosensors 12:1069. https://doi.org/10.3390/bios12121069
Yang C, Zhang D, Wang D, Luan H, Chen X, Yan W (2023) In situ polymerized MXene/polypyrrole/hydroxyethyl cellulose-based flexible strain sensor enabled by machine learning for handwriting recognition. ACS Appl Mater Interfaces 15:5811. https://doi.org/10.1021/acsami.2c18989
Wang H, Li S, Lu H, Zhu M, Liang H, Wu X, Zhang Y (2023) Carbon-based flexible devices for comprehensive health monitoring. Small Methods 7:2201340. https://doi.org/10.1002/smtd.202201340
Sun Z, Yang S, Zhao P et al (2020) Skin-like ultrasensitive strain sensor for full-Range detection of human health monitoring. ACS Appl Mater Interfaces 12:13287. https://doi.org/10.1021/acsami.9b21751
Heng W, Solomon S, Gao W (2022) Flexible electronics and devices as human-machine interfaces for medical robotics. Adv Mater 34:2107902. https://doi.org/10.1002/adma.202107902
Lu L, Jiang C, Hu G, Liu J, Yang B (2021) Flexible noncontact sensing for muman-machine interaction. Adv Mater 33:2100218. https://doi.org/10.1002/adma.202100218
Lim HR, Kim HS, Qazi R, Kwon YT, Jeong JW, Yeo WH (2020) Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv Mater 32:1901924. https://doi.org/10.1002/adma.201901924
Wu S, Moody K, Kollipara A, Zhu Y (2023) Highly sensitive, stretchable, and robust strain sensor based on crack propagation and opening. ACS Appl Mater Interfaces 15:1798. https://doi.org/10.1021/acsami.2c16741
Liang C, Sun J, Liu Z et al (2023) Wide range strain distributions on the electrode for highly sensitive flexible tactile sensor with low hysteresis. ACS Appl Mater Interfaces 15:15096. https://doi.org/10.1021/acsami.2c21241
Kim D, Chhetry A, Zahed MA, Sharma S, Jeong S, Song H, Park JY (2023) Highly sensitive and reliable piezoresistive strain sensor based on cobalt nanoporous carbon-incorporated laser-Induced graphene for smart healthcare wearables. ACS Appl Mater Interfaces 15:1475. https://doi.org/10.1021/acsami.2c15500
You J, Zhang J, Zhang J, Yang Z, Zhang X (2022) Stretchable and highly sensitive strain sensor based on a 2D MXene and 1D whisker carbon nanotube binary composite film. ACS Appl Mater Interfaces 14:55812. https://doi.org/10.1021/acsami.2c18135
Gao Z, Xiao X, Carlo AD, Yin J, Wang Y, Huang L, Tang J, Chen J (2023) Advances in wearable strain sensors based on electrospun fibers. Adv Funct Mater 33:2214265. https://doi.org/10.1002/adfm.202214265
Chen F, Zhang S, Hu L et al (2023) Bio‐inspired artificial perceptual devices for neuromorphic computing and gesture recognition. Adv Funct Mater 2300266 https://doi.org/10.1002/adfm.202300266
Meng K, Xiao X, Wei W, Chen G, Nashalian A, Shen S, Xiao X, Chen J (2022) Wearable pressure sensors for pulse wave monitoring. Adv Mater 34:2109357. https://doi.org/10.1002/adma.202109357
Lei D, Liu N, Su T, Zhang Q, Wang L, Ren Z, Gao Y (2022) Roles of MXene in pressure sensing: preparation, composite structure design, and mechanism. Adv Mater 34:2110608. https://doi.org/10.1002/adma.202110608
Sun H, Fang X, Fang Z, Zhao L, Tian B, Verma P, Maeda R, Jiang Z (2022) An ultrasensitive and stretchable strain sensor based on a microcrack structure for motion monitoring. Microsyst Nanoeng 8:111. https://doi.org/10.1038/s41378-022-00419-6
Park J, Kim DS, Yoon Y, Shanmugasundaram A, Lee DW (2022) Crack-based sensor by using the UV curable polyurethane-acrylate coated film with V-Groove arrays. Micromachines 14:62. https://doi.org/10.3390/mi14010062
Lin M, Zheng Z, Yang L, Luo M, Fu L, Lin B, Xu C (2022) A high-performance, sensitive, wearable multifunctional sensor based on rubber/CNT for human motion and skin temperature detection. Adv Mater 34:2107309. https://doi.org/10.1002/adma.202107309
Kim Y-n, Lee J, Kang S-K (2022) Ultrasensitive crack-based strain sensors: mechanism, performance, and biomedical applications. J Mech Sci Technol 36:1059. https://doi.org/10.1007/s12206-022-0246-z
Peng S, Wu S, Yu Y, Blanloeuil P, Wang CH (2020) Nano-toughening of transparent wearable sensors with high sensitivity and a wide linear sensing range. J Mater Chem A 8:20531. https://doi.org/10.1039/d0ta05129b
Amjadi M, Turan M, Clementson CP, Sitti M (2016) Parallel microcracks-based ultrasensitive and highly stretchable strain Sensors. ACS Appl Mater Interfaces 8:5618. https://doi.org/10.1021/acsami.5b12588
Chen S, Wei Y, Wei S, Lin Y, Liu L (2016) Ultrasensitive cracking-assisted strain sensors based on silver nanowires/graphene hybrid particles. ACS Appl Mater Interfaces 8:25563. https://doi.org/10.1021/acsami.6b09188
Yang T, Li X, Jiang X, Lin S, Lao J, Shi J, Zhen Z, Li Z, Zhu H (2016) Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing. Mater Hori 3:248. https://doi.org/10.1039/c6mh00027d
Li Z-Y, Zhai W, Yu Y-F et al (2020) An utrasensitive, durable and stretchable strain sensor with crack-wrinkle structure for human motion monitoring. Chin J Polym Sci 39:316. https://doi.org/10.1007/s10118-021-2500-8
Luo W, Fei W, Yang L, Chen Y, Wen Y (2020) Stretchable strain sensors based on conductive coating cracks with improved interfacial adhesion by wet phase separation treatment. J Coat Technol Res 17:1157. https://doi.org/10.1007/s11998-020-00336-1
Kang D, Pikhitsa PV, Choi YW et al (2014) Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516:222. https://doi.org/10.1038/nature14002
Lee T, Choi YW, Lee G, Kim SM, Kang D, Choi M (2017) Crack-based strain sensor with diverse metal films by inserting an inter-layer. RSC Adv 7:34810. https://doi.org/10.1039/c7ra05837c
Jang S, Kim J, Kim DW, Kim JW, Chun S, Lee HJ, Yi G-R, Pang C (2019) Carbon-based, ultraelastic, hierarchically coated fiber strain sensors with crack-controllable beads. ACS Appl Mater Interfaces 11:15079. https://doi.org/10.1021/acsami.9b03204
Yang S, Yang W, Yin R et al (2023) Waterproof conductive fiber with microcracked synergistic conductive layer for high-performance tunable wearable strain sensor. Chem Eng J 453:139716. https://doi.org/10.1016/j.cej.2022.139716
Lu D, Chu Y, Liao S et al (2022) Highly sensitive fabric strain sensor with double-layer conductive networks for joint rehabilitation therapy. Compos Sci Technol 230:109778. https://doi.org/10.1016/j.compscitech.2022.109778
Huang Y, Xiang Y, Ren W, Li F, Li C, Yang T (2021) Enhancing the sensitivity of crack-based strain sensor assembled by functionalized graphene for human motion detection. Sci China Technol Sc 64:1805. https://doi.org/10.1007/s11431-021-1856-6
Sun H, Ye C, Zhao G et al (2020) Ultrasensitive micro/nanocrack-based graphene nanowall strain sensors derived from the substrate’s Poisson’s ratio effect. J Mater Chem A 8:10310. https://doi.org/10.1039/d0ta02878a
Guo Q, Pang W, Xie X, Xu Y, Yuan W (2022) Stretchable, conductive and porous MXene-based multilevel structured fibers for sensitive strain sensing and gas sensing. J Mater Chem A 10:15634. https://doi.org/10.1039/d2ta02998g
Dong H, Sun J, Liu X, Jiang X, Lu S (2022) Highly sensitive and stretchable MXene/CNTs/TPU composite strain sensor with bilayer conductive structure for human motion detection. ACS Appl Mater Interfaces 14:15504. https://doi.org/10.1021/acsami.1c23567
Pu J-H, Zhao X, Zha X-J et al (2020) A strain localization directed crack control strategy for designing MXene-based customizable sensitivity and sensing range strain sensors for full-range human motion monitoring. Nano Energy 74:104814. https://doi.org/10.1016/j.nanoen.2020.104814
Shi X, Wang H, Xie X, Xue Q, Zhang J, Kang S, Wang C, Liang J, Chen Y (2019) Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS Nano 13:649. https://doi.org/10.1021/acsnano.8b07805
Zhao X, Guo H, Ding P et al (2023) Hollow-porous fiber-shaped strain sensor with multiple wrinkle-crack microstructure for strain visualization and wind monitoring. Nano Energy 108:108197. https://doi.org/10.1016/j.nanoen.2023.108197
Han F, Li J, Zhao S, Zhang Y, Huang W, Zhang G, Sun R, Wong C-P (2017) A crack-based nickel@graphene-wrapped polyurethane sponge ternary hybrid obtained by electrodeposition for highly sensitive wearable strain sensors. J Mater Chem C 5:10167. https://doi.org/10.1039/c7tc03636a
Wang C, Zhao J, Ma C et al (2017) Detection of non-joint areas tiny strain and anti-interference voice recognition by micro-cracked metal thin film. Nano Energy 34:578. https://doi.org/10.1016/j.nanoen.2017.02.050
Sun H, Dai K, Zhai W, Zhou Y, Li J, Zheng G, Li B, Liu C, Shen C (2019) A highly sensitive and stretchable yarn strain sensor for human motion tracking utilizing a wrinkle-assisted crack structure. ACS Appl Mater Interfaces 11:36052. https://doi.org/10.1021/acsami.9b09229
Zhou Y, Zhan P, Ren M, Zheng G, Dai K, Mi L, Liu C, Shen C (2019) Significant stretchability enhancement of a crack-based strain sensor combined with high sensitivity and superior durability for motion monitoring. ACS Appl Mater Interfaces 11:7405. https://doi.org/10.1021/acsami.8b20768
Sun M, Li P, Qin H et al (2023) Liquid metal/CNTs hydrogel-based transparent strain sensor for wireless health monitoring of aquatic animals. Chem Eng J 454:140459. https://doi.org/10.1016/j.cej.2022.140459
Guo X, Hong W, Zhao Y et al (2023) Bioinspired dual-mode stretchable strain sensor based on magnetic nanocomposites for strain/magnetic discrimination. Small 19:2205316. https://doi.org/10.1002/smll.202205316
Wang W, Ma Y, Wang T et al (2022) Double-layered conductive network design of flexible strain sensors for high sensitivity and wide working range. ACS Appl Mater Interfaces 14:36611. https://doi.org/10.1021/acsami.2c08285
Sun H, Bu Y, Liu H, Wang J, Yang W, Li Q, Guo Z, Liu C, Shen C (2022) Superhydrophobic conductive rubber band with synergistic dual conductive layer for wide-range sensitive strain sensor. Sci Bull 67:1669. https://doi.org/10.1016/j.scib.2022.07.020
Qu X, Wu Y, Ji P et al (2022) Crack-based core-sheath fiber strain sensors with an ultralow detection limit and an ultrawide working range. ACS Appl Mater Interfaces 14:29167. https://doi.org/10.1021/acsami.2c04559
Zhang DB, Yin R, Zheng YJ et al (2022) Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and Joule heating performances. Chem Eng J 438:135587. https://doi.org/10.1016/j.cej.2022.135587
Chen J, Yu Q, Cui X, Dong M, Zhang J, Wang C, Fan J, Zhu Y, Guo Z (2019) An overview of stretchable strain sensors from conductive polymer nanocomposites. J Mater Chem C 7:11710. https://doi.org/10.1039/c9tc03655e
Chen J, Wang F, Zhu G, Wang C, Cui X, Xi M, Chang X, Zhu Y (2021) Breathable strain/temperature sensor based on fibrous networks of ionogels capable of monitoring human motion, respiration, and proximity. ACS Appl Mater Interfaces 13:51567. https://doi.org/10.1021/acsami.1c16733
Li H, Chen J, Chang X, Xu Y, Zhao G, Zhu Y, Li Y (2021) A highly stretchable strain sensor with both an ultralow detection limit and an ultrawide sensing range. J Mater Chem A 9:1795. https://doi.org/10.1039/d0ta10990h
Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6:296. https://doi.org/10.1038/nnano.2011.36
Wu X, Lei Y, Li S et al (2021) Photothermal and Joule heating-assisted thermal management sponge for efficient cleanup of highly viscous crude oil. J Hazard Mater 403:124090. https://doi.org/10.1016/j.jhazmat.2020.124090
Jang SH, Kim D, Park YL (2018) Accelerated curing and enhanced material properties of conductive polymer nanocomposites by Joule heating. Materials 11:1775. https://doi.org/10.3390/ma11091775
Zhao S, Yuan A, Xu H, Wei Z, Zhou S, Xiao Y, Jiang L, Lei J (2022) Elevating the photothermal conversion efficiency of phase-change materials simultaneously toward solar energy storage, self-healing, and recyclability. ACS Appl Mater Interfaces 14:29213. https://doi.org/10.1021/acsami.2c05302
Behnam MA, Emami F, Sobhani Z, Koohi-Hosseinabadi O, Dehghanian AR, Zebarjad SM, Moghim MH, Oryan A (2018) Novel combination of silver nanoparticles and carbon nanotubes for plasmonic photo thermal therapy in melanoma cancer model. Adv Pharm Bull 8:49. https://doi.org/10.15171/apb.2018.006
Liu Y, Lin Z, Wang P, Huang F, Sun JL (2022) Measurement of the photothermal conversion efficiency of CNT films utilizing a raman spectrum. Nanomaterials 12:1101. https://doi.org/10.3390/nano12071101