High performance diamond-based solar-blind photodetectors enabled by Schottky barrier modulation

Carbon - Tập 200 - Trang 510-516 - 2022
Chao-Nan Lin1, Zhen-Feng Zhang1, Ying-Jie Lu1, Xun Yang1, Yuan Zhang1, Xing Li, Jin-Hao Zang1, Xin-Chang Pang2, Lin Dong1, Chong-Xin Shan1
1Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
2School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China

Tài liệu tham khảo

Qian, 2017, Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide, ACS Photonics, 4, 2203, 10.1021/acsphotonics.7b00359 Yan, 2020, High sensitivity and fast response self-powered solar-blind ultraviolet photodetector with a β-Ga2O3/spiro-MeOTAD p-n heterojunction, J. Mater. Chem. C, 8, 4502, 10.1039/C9TC06767A Zhang, 2021, Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array, Carbon, 173, 427, 10.1016/j.carbon.2020.11.013 Zhou, 2016, High-performance solar-blind deep ultraviolet photodetector based on individual single-crystalline Zn2GeO4 nanowire, Adv. Funct. Mater., 26, 704, 10.1002/adfm.201504135 Patil-Chaudhari, 2017, Solar blind photodetectors enabled by nanotextured β-Ga2O3 films grown via oxidation of GaAs substrates, IEEE Photonics J., 9, 10.1109/JPHOT.2017.2688463 Li, 2010, Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts, Adv. Mater., 22, 5145, 10.1002/adma.201002608 Hu, 2015, High gain Ga2O3 solar-blind photodetectors realized via a carrier multiplication process, Opt. Express, 23, 13554, 10.1364/OE.23.013554 Arora, 2018, Ultrahigh performance of self-powered β-Ga2O3 thin film solar-blind photodetector grown on cost-effective si substrate using high-temperature seed layer, ACS Photonics, 5, 2391, 10.1021/acsphotonics.8b00174 Chen, 2021, Bandgap engineering of Gallium oxides by crystalline disorder, Mater. Today Phys., 18 Rodak, 2013, Solar-blind AlxGa1−xN/AlN/SiC photodiodes with a polarization-induced electron filter, Appl. Phys. Lett., 103, 10.1063/1.4818551 Fan, 2017, A self-powered solar-blind ultraviolet photodetector based on a Ag/ZnMgO/ZnO structure with fast response speed, RSC Adv., 7, 13092, 10.1039/C6RA28736K Lin, 2018, Diamond-based all-carbon photodetectors for solar-blind imaging, Adv. Opt. Mater., 6, 10.1002/adom.201800068 Wei, 2017, A solar-blind uv detector based on graphene-microcrystalline diamond heterojunctions, Small, 13, 10.1002/smll.201701328 Li, 2020, Ga2O3 solar-blind position-sensitive detectors, Sci. China Phys. Mech. Astron., 63 Girolami, 2022, Trucchi, Self-powered solar-blind ultrafast UV-C diamond detectors with asymmetric Schottky contacts, Carbon, 189, 27, 10.1016/j.carbon.2021.12.050 Liu, 2014, Diamond logic inverter with enhancement-mode metal-insulator-semiconductor field effect transistor, Appl. Phys. Lett., 105, 10.1063/1.4894291 Liu, 2016, Design and fabrication of high-performance diamond triple-gate field-effect transistors, Sci. Rep., 6 Liu, 2022, High temperature operation of logic AND gate based on diamond Schottky diodes fabricated by selective growth method, Carbon, 197, 292, 10.1016/j.carbon.2022.06.040 De Sio, 2003, Spectral response of large area CVD diamond photoconductors for space applications in the vacuum UV, Diam. Relat. Mater., 12, 1819, 10.1016/S0925-9635(03)00216-4 James, 2018, Negative electron affinity from aluminium on the diamond (100) surface: a theoretical study, J. Phys. Condens. Matter, 30, 10.1088/1361-648X/aac041 Chen, 2018, Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging, J. Mater. Chem. C, 6, 5727, 10.1039/C8TC01122B Liao, 2006, Photovoltaic Schottky ultraviolet detectors fabricated on boron-doped homoepitaxial diamond layer, Appl. Phys. Lett., 88, 10.1063/1.2166490 Lefeuvre, 2003, Bulk photoconductivity of CVD diamond films for UV and XUV detection, Diam. Relat. Mater., 12, 642, 10.1016/S0925-9635(02)00301-1 Liao, 2006, High-performance metal-semiconductor-metal deep-ultraviolet photodetectors based on homoepitaxial diamond thin film, Appl. Phys. Lett., 89, 10.1063/1.2349829 Zhou, 2019, Nanoplasmonic 1D diamond UV photodetectors with high performance, ACS Appl. Mater. Interfaces, 11, 38068, 10.1021/acsami.9b13321 Chen, 2017, Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures, ACS Appl. Mater. Interfaces, 9, 36997, 10.1021/acsami.7b09812 Huang, 2012, Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes, Appl. Phys. Lett., 101, 10.1063/1.4772984 Shao, 2014, High-gain AlGaN solar-blind avalanche photodiodes, IEEE Electron. Device Lett., 35, 372, 10.1109/LED.2013.2296658 Alvarez, 2005, Large deep-ultraviolet photocurrent in metal-semiconductor-metal structures fabricated on as-grown boron-doped diamond, Appl. Phys. Lett., 87, 10.1063/1.2048807 Chen, 2021, Ultra-sensitive flexible Ga2O3 solar-blind photodetector array realized via ultra-thin absorbing medium, Nano Res., 15, 3711, 10.1007/s12274-021-3942-6 Liu, 2017, Logic circuits with hydrogenated diamond field-effect transistors, IEEE Electron. Device Lett., 38, 922, 10.1109/LED.2017.2702744 Liao, 2019, Energy‐efficient metal-insulator-metal‐semiconductor field‐effect transistors based on 2D carrier gases, Adv. Electron. Mater., 5, 10.1002/aelm.201800832 Liu, 2022, MOSFETs on (110) C–H diamond: ALD Al₂O₃/diamond interface analysis and high performance normally-OFF operation realization, IEEE Trans. Electron. Dev., 69, 949, 10.1109/TED.2022.3147152 Tordjman, 2014, Superior surface transfer doping of diamond with MoO3, Adv. Mater. Interfac., 1, 10.1002/admi.201300155 Wang, 2019, Hydrogen-terminated diamond field-effect transistor with AlOx dielectric layer formed by autoxidation, Sci. Rep., 9, 5192, 10.1038/s41598-019-41082-8 Serpente, 2021, Combined electrical resistivity-electron reflectivity measurements for evaluating the homogeneity of hydrogen-terminated diamond surfaces, Diam. Relat. Mater., 114, 10.1016/j.diamond.2021.108290 Geis, 2021, Hydrogen and deuterium termination of diamond for low surface resistance and surface step control, Diam. Relat. Mater., 118, 10.1016/j.diamond.2021.108518 Crawford, 2021, Surface transfer doping of diamond: a review, Prog. Surf. Sci., 96, 10.1016/j.progsurf.2021.100613 Xu, 2014, Oxygen vacancy-induced room-temperature ferromagnetism in D—D neutron irradiated single-crystal TiO2(001) rutile, Chin. Phys. B, 23, 10.1088/1674-1056/23/10/106101 Schubert, 2009, Structure of epitaxial Mn-stabilized ZrO2 layers on yttria-stabilized zirconia single crystals prepared by sputtering, Thin Solid Films, 517, 5676, 10.1016/j.tsf.2009.02.094 Takahiro, 2003, Structural characterization of GaAs1-xBix alloy by rutherford backscattering spectrometry combined with the channeling technique, J. Electron. Mater., 32, 34, 10.1007/s11664-003-0250-8 Fairchild, 2008, Fabrication of ultrathin single‐crystal diamond membranes, Adv. Mater., 20, 4793, 10.1002/adma.200801460 Crawford, 2018, The role of hydrogen plasma power on surface roughness and carrier transport in transfer-doped H-diamond, Diam. Relat. Mater., 84, 48, 10.1016/j.diamond.2018.03.005 Liu, 2010, High responsivity ultraviolet photodetector realized via a carrier-trapping process, Appl. Phys. Lett., 97, 10.1063/1.3527974 Shalish, 2000, Grain-boundary-controlled transport in GaN layers, Phys. Rev. B, 61, 15573, 10.1103/PhysRevB.61.15573 Ristein, 2005, Diamond surfaces: familiar and amazing, Appl. Phys. A, 82, 377, 10.1007/s00339-005-3363-5 Kasu, 2002, High hole mobility (1300 cm2/V s) at room temperature in hydrogen-terminated (001) diamond, Appl. Phys. Lett., 80, 3961, 10.1063/1.1481535 Katz, 2001, Gain mechanism in GaN Schottky ultraviolet detectors, Appl. Phys. Lett., 79, 1417, 10.1063/1.1394717 Katz, 2004, Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors, Appl. Phys. Lett., 84, 4092, 10.1063/1.1753056 Sze, 1971, Current transport in metal-semiconductor-metal (MSM) structures, Solid State Electron., 14, 1209, 10.1016/0038-1101(71)90109-2 Sze, 1981 Maier, 2000, Origin of surface conductivity in diamond, Phys. Rev. Lett., 85, 3472, 10.1103/PhysRevLett.85.3472 Ristein, 2001, Diamond surface conductivity experiments and photoelectron spectroscopy, Diam. Relat. Mater., 10, 416, 10.1016/S0925-9635(00)00555-0 Liu, 2017, Deposition of TiO2/Al2O3 bilayer on hydrogenated diamond for electronic devices: capacitors, field-effect transistors, and logic inverters, J. Appl. Phys., 121, 10.1063/1.4985066 Oing, 2019, Tunable carrier density and high mobility of two-dimensional hole gases on diamond: the role of oxygen adsorption and surface roughness, Diam. Relat. Mater., 97, 10.1016/j.diamond.2019.107450 Konstantatos, 2010, Nanostructured materials for photon detection, Nat. Nanotechnol., 5, 391, 10.1038/nnano.2010.78 Kawarada, 2012, High-current metal oxide semiconductor field-effect transistors on H-terminated diamond surfaces and their high-frequency operation, Jpn. J. Appl. Phys., 51, 10.1143/JJAP.51.090111 Liu, 2014, All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity, Nat. Commun., 5, 4007, 10.1038/ncomms5007 Guo, 2012, A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection, Nat. Nanotechnol., 7, 798, 10.1038/nnano.2012.187 Liu, 2015, Fabrication of UV photodetector on TiO2/Diamond film, Sci. Rep., 5 Iwakaji, 2009, Characterization of diamond ultraviolet detectors fabricated with high-quality single-crystalline chemical vapor deposition films, Appl. Phys. Lett., 94, 10.1063/1.3143621 Liu, 2016, Fabrication of three dimensional diamond ultraviolet photodetector through down-top method, Appl. Phys. Lett., 109, 10.1063/1.4965027 Lin, 2019, Diamond based photodetectors for solar-blind communication, Opt. Express, 27, 29962, 10.1364/OE.27.029962 Wang, 2010, Study on trapping center and trapping effect in MSM ultraviolet photo-detector on microcrystalline diamond film, Phys. Status Solidi A, 207, 468, 10.1002/pssa.200925042 Bevilacqua, 2009, Extreme sensitivity displayed by single crystal diamond deep ultraviolet photoconductive devices, Appl. Phys. Lett., 95, 10.1063/1.3273378 Xu, 2019, Carrier transport and gain mechanisms in β-Ga2O3-based metal-semiconductor-metal solar-blind Schottky photodetectors, IEEE Trans. Electron. Dev., 66, 2276, 10.1109/TED.2019.2906906 Liu, 2017, High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN, Nanoscale, 9, 8142, 10.1039/C7NR01290J Prakash, 2016, Ultrasensitive self-powered large area planar GaN UV-photodetector using reduced graphene oxide electrodes, Appl. Phys. Lett., 109, 10.1063/1.4971982