High performance computing enabling exhaustive analysis of higher order single nucleotide polymorphism interaction in Genome Wide Association Studies
Tóm tắt
Từ khóa
Tài liệu tham khảo
Visscher PM, Brown Ma, McCarthy MI, Yang J: Five years of GWAS discovery. American Journal of Human Genetics. 2012, 90 (7): 24-[http://www.ncbi.nlm.nih.gov/pubmed/22243964]
Cantor RM, Lange K, Sinsheimer JS: Prioritizing GWAS Results: A Review of Statistical Methods and Recommendations for Their Application. American Journal of Human Genetics. 2010, 86: 6-22. 10.1016/j.ajhg.2009.11.017. [http://www.ncbi.nlm.nih.gov/pubmed/20074509]
Zuk O, Hechter E, Sunyaev SR, Lander ES: The mystery of missing heritability: Genetic interactions create phantom heritability. Proceedings of the National Academy of Sciences. 2012, 109: 1193-1198. 10.1073/pnas.1119675109. [http://www.ncbi.nlm.nih.gov/pubmed/22223662]
Culverhouse R, Suarez BK, Lin J, Reich T: A perspective on epistasis: limits of models displaying no main effect. American Journal of Human Genetics. 2002, 70: 461-471. 10.1086/338759. [http://www.ncbi.nlm.nih.gov/pubmed/11791213]
Gilbert-Diamond D, Moore JH: Analysis of gene-gene interactions. Current Protocols in Human Genetics. 2011, Chapter 1 (July): Unit1.14-[http://www.ncbi.nlm.nih.gov/pubmed/21735376]
Wan X, Yang C, Yang Q, Xue H, Fan X, Tang NLS, Yu W: BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies. American Journal of Human Genetics. 2010, 87: 325-40. 10.1016/j.ajhg.2010.07.021. [http://www.ncbi.nlm.nih.gov/pubmed/20817139]
Wang Z, Wang Y, Tan KL, Wong L, Agrawal D: eCEO: An efficient cloud epistasis computing model in genome-wide association study. Bioinformatics. 2011, 27: 1045-1051. 10.1093/bioinformatics/btr091. [http://www.ncbi.nlm.nih.gov/pubmed/21367868]
Liu Y, Xu H, Chen S, Chen X, Zhang Z, Zhu Z, Qin X, Hu L, Zhu J, Zhao GP, Kong X: Genome-wide interaction-based association analysis identified multiple new susceptibility loci for common diseases. PLoS Genetics. 2011, 7: e1001338-10.1371/journal.pgen.1001338. [http://www.ncbi.nlm.nih.gov/pubmed/21437271]
Kam-Thong T, Pütz B, Karbalai N, Müller-Myhsok B, Borgwardt K: Epistasis detection on quantitative phenotypes by exhaustive enumeration using GPUs. Bioinformatics. 2011, 27: 214-221. 10.1093/bioinformatics/btr218. [http://www.ncbi.nlm.nih.gov/pubmed/21685073]
Yung LS, Yang C, Wan X, Yu W: GBOOST: A GPU-based tool for detecting gene-gene interactions in genome-wide case control studies. Bioinformatics. 2011, 27: 1309-1310. 10.1093/bioinformatics/btr114. [http://www.ncbi.nlm.nih.gov/pubmed/21372087]
Goudey B, Rawlinson D, Wang Q, Shi F, Ferra H, Campbell RM, Stern L, Inouye MT, Ong CS, Kowalczyk A: GWIS-model-free, fast and exhaustive search for epistatic interactions in case-control GWAS. BMC Genomics. 2013, 14 (Suppl 3): S10-10.1186/1471-2164-14-S3-S10. [http://www.ncbi.nlm.nih.gov/pubmed/23819779]
Prabhu S, Pe'er I: Ultrafast genome-wide scan for SNP-SNP interactions in common complex disease. Genome Research. 2012, 22: 2230-2240. 10.1101/gr.137885.112. [http://www.ncbi.nlm.nih.gov/pubmed/22767386]
Ma L, Runesha HB, Dvorkin D, Garbe JR, Da Y: Parallel and serial computing tools for testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies. BMC Bioinformatics. 2008, 9: 315-10.1186/1471-2105-9-315. [http://www.ncbi.nlm.nih.gov/pubmed/18644146]
Reumann M, Makalic E, Goudey BW, Inouye M, Bickerstaffe a, Bui M, Park DJ, Kapuscinski MK, Schmidt DF, Zhou Z, Qian G, Zobel J, Wagner J, Hopper JL: Supercomputing enabling exhaustive statistical analysis of genome wide association study data: Preliminary results. Proceedings - 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2012, 1258-1261. [http://www.ncbi.nlm.nih.gov/pubmed/23366127]
Gyenesei A, Moody J, Semple CaM, Haley CS, Wei WH: High-throughput analysis of epistasis in genome-wide association studies with BiForce. Bioinformatics. 2012, 28: 1957-1964. 10.1093/bioinformatics/bts304. [http://www.ncbi.nlm.nih.gov/pubmed/22618535]
Lewis CM, Knight J: Introduction to genetic association studies. Cold Spring Harbor Protocols. 2012, 7: 297-306. [http://www.ncbi.nlm.nih.gov/pubmed/22383645]
Zhang X, Huang S, Zou F, Wang W: TEAM: Efficient two-locus epistasis tests in human genome-wide association study. Bioinformatics. 2010, 26: 217-27. 10.1093/bioinformatics/btq186. [http://www.ncbi.nlm.nih.gov/pubmed/20529910]
Brinza D, Schultz M, Tesler G, Bafna V: RAPID detection of gene-gene interactions in genome-wide association studies. Bioinformatics. 2010, 26: 2856-2862. 10.1093/bioinformatics/btq529. [http://www.ncbi.nlm.nih.gov/pubmed/20871107]
Chen L, Yu G, Miller DJ, Song L, Langefeld C, Herrington D, Liu Y, Wang Y: A ground truth based comparative study on detecting epistatic SNPs. Proceedings - 2009 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW 2009). 2009, 1-4 (Nov 2009): 26-31. [http://www.ncbi.nlm.nih.gov/pubmed/21151836]
Casella G, Moreno E: Assessing Robustness of Intrinsic Tests of Independence in Two-Way Contingency Tables. Journal of the American Statistical Association. 2009, 104: 1261-1271. 10.1198/jasa.2009.tm08106.
Su Z, Marchini J, Donnelly P: HAPGEN2: Simulation of multiple disease SNPs. Bioinformatics. 2011, 27: 2304-2305. 10.1093/bioinformatics/btr341. [http://www.ncbi.nlm.nih.gov/pubmed/21653516]
International HapMap Consortium: The International HapMap Project. Nature. 2003, 426: 789-796. 10.1038/nature02168. [http://www.ncbi.nlm.nih.gov/pubmed/14685227]
1000 Genomes Project Consortium: A map of human genome variation from population-scale sequencing. Nature. 2010, 467: 1061-1073. 10.1038/nature09534. [http://www.ncbi.nlm.nih.gov/pubmed/20981092]
Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC: GPU Computing. Proceedings of the IEEE 2008. 96, 879-899.
Kirk DB, Hwu WmW: Programming Massively Parallel Processors: A Hands-on Approach. 2010, San Francisco CA, USA: Morgan Kaufmann Publishers Inc, 1