High-order accurate methods for Nyström discretization of integral equations on smooth curves in the plane
Tóm tắt
Từ khóa
Tài liệu tham khảo
Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)
Bremer, J.: A fast direct solver for the integral equations of scattering theory on planar curves with corners. J. Comput. Phys. 231, 1879–1899 (2012)
Bremer, J., Rokhlin, V.: Efficient discretization of Laplace boundary integral equations on polygonal domains. J. Comput. Phys. 229, 2507–2525 (2010)
Bremer, J., Rokhlin, V., Sammis, I.: Universal quadratures for boundary integral equations on two-dimensional domains with corners. J. Comput. Phys. 229, 8259–8280 (2010)
Cheng, H., Rokhlin, V., Yarvin, N.: Nonlinear optimization, quadrature, and interpolation. SIAM J. Optim. 9, 901–923 (1999)
Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93, 2nd edn.Applied Mathematical Sciences. Springer-Verlag, Berlin (1998)
Driscoll, T.A., Toh, K.-C., Trefethen, L.N.: From potential theory to matrix iteration in six steps. SIAM Rev. 40, 547–578 (1998)
Duan, Z.-H., Krasny, R.: An adaptive treecode for computing nonbonded potential energy in classical molecular systems. J. Comput. Chem. 22, 184–195 (2001)
Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)
Hao, S., Barnett, A., Martinsson, P.: Nyström Quadratures for BIEs with Weakly Singular Kernels on 1D Domains (2012). http://amath.colorado.edu/faculty/martinss/Nystrom/
Helsing, J.: Integral equation methods for elliptic problems with boundary conditions of mixed type. J. Comput. Phys. 228, 8892–8907 (2009)
Helsing, J.: Solving Integral Equations on Piecewise Smooth Boundaries Using the RCIP Method: A Tutorial, p. 34. (2012,preprint) arXiv: 1207.6737v3
Helsing, J., Karlsson, A.: An Accurate Boundary Value Problem Solver Applied to Scattering from Cylinders with Corners (2012). arXiv: 1211.2467
Helsing, J., Ojala, R.: Corner singularities for elliptic problems: integral equations, graded meshes, quadrature, and compressed inverse preconditioning. J. Comput. Phys. 227, 8820–8840 (2008)
Kapur, S., Rokhlin, V.: High-order corrected trapezoidal quadrature rules for singular functions. SIAM J. Numer. Anal. 34, 1331–1356 (1997)
Klöckner, A., Barnett, A.H., Greengard, L., O’Neil, M.: Quadrature by Expansion: A New Method for the Evaluation of Layer Potentials. J. Comput. Phys. (2012). In press
Kolm, P., Rokhlin, V.: Numerical quadratures for singular and hypersingular integrals. Comput. Math. Appl. 41, 327–352 (2001)
Kress, R.: Boundary integral equations in time-harmonic acoustic scattering. Math. Comput. Model. 15, 229–243 (1991)
Kress, R.: Linear Integral Equations, vol. 82 of Applied Mathematical Sciences, 2nd edn. Springer (1999)
Martensen, E.: Über eine methode zum räumlichen neumannschen problem mit einer anwendung für torusartige berandungen. Acta Math. 109, 75–135 (1963)
Martinsson, P., Rokhlin, V.: A fast direct solver for boundary integral equations in two dimensions. J. Comput. Phys. 205, 1–23 (2004)
Nyström, E.: Über die praktische Auflösung von Integralgleichungen mit Andwendungen aug Randwertaufgaben. Acta Math. 54, 185–204 (1930)
Ojala, R.: Towards an all-embracing elliptic solver in 2D. PhD thesis, Department of Mathematics, Lund University, Sweden (2011)
Saad, Y.: Iterative Methods for Sparse Linear Systems. Society for industrial and applied mathematics, 2nd edn. (2003)
Trefethen, L.N.: Spectral Methods in MATLAB, vol. 10 of Software, Environments, and Tools, Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)
Trefethen, L.N.: Approximation Theory and Approximation Practice, SIAM (2012). http://www.maths.ox.ac.uk/chebfun/ATAP
Ying, L., Biros, G., Zorin, D.: A kernel-independent adaptive fast multipole method in two and three dimensions. J. Comput. Phys. 196, 591–626 (2004)