High-order accurate methods for Nyström discretization of integral equations on smooth curves in the plane

Sijia Hao1, Alex H. Barnett2, Per-Gunnar Martinsson1, Patrick Young1
1Department of Applied Mathematics, University of Colorado at Boulder, Boulder, USA
2Department of Mathematics, Dartmouth College, Hanover, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alpert, B.K.: Hybrid gauss-trapezoidal quadrature rules. SIAM J. Sci. Comput. 20, 1551–1584 (1999)

Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)

Barnes, J., Hut, P.: A hierarchical O(N log N) force-calculation algorithm. Nature 324 (1986)

Bremer, J.: A fast direct solver for the integral equations of scattering theory on planar curves with corners. J. Comput. Phys. 231, 1879–1899 (2012)

Bremer, J., Rokhlin, V.: Efficient discretization of Laplace boundary integral equations on polygonal domains. J. Comput. Phys. 229, 2507–2525 (2010)

Bremer, J., Rokhlin, V., Sammis, I.: Universal quadratures for boundary integral equations on two-dimensional domains with corners. J. Comput. Phys. 229, 8259–8280 (2010)

Cheng, H., Rokhlin, V., Yarvin, N.: Nonlinear optimization, quadrature, and interpolation. SIAM J. Optim. 9, 901–923 (1999)

Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93, 2nd edn.Applied Mathematical Sciences. Springer-Verlag, Berlin (1998)

Driscoll, T.A., Toh, K.-C., Trefethen, L.N.: From potential theory to matrix iteration in six steps. SIAM Rev. 40, 547–578 (1998)

Duan, Z.-H., Krasny, R.: An adaptive treecode for computing nonbonded potential energy in classical molecular systems. J. Comput. Chem. 22, 184–195 (2001)

Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)

Hao, S., Barnett, A., Martinsson, P.: Nyström Quadratures for BIEs with Weakly Singular Kernels on 1D Domains (2012). http://amath.colorado.edu/faculty/martinss/Nystrom/

Helsing, J.: Integral equation methods for elliptic problems with boundary conditions of mixed type. J. Comput. Phys. 228, 8892–8907 (2009)

Helsing, J.: Solving Integral Equations on Piecewise Smooth Boundaries Using the RCIP Method: A Tutorial, p. 34. (2012,preprint) arXiv: 1207.6737v3

Helsing, J., Karlsson, A.: An Accurate Boundary Value Problem Solver Applied to Scattering from Cylinders with Corners (2012). arXiv: 1211.2467

Helsing, J., Ojala, R.: Corner singularities for elliptic problems: integral equations, graded meshes, quadrature, and compressed inverse preconditioning. J. Comput. Phys. 227, 8820–8840 (2008)

Kapur, S., Rokhlin, V.: High-order corrected trapezoidal quadrature rules for singular functions. SIAM J. Numer. Anal. 34, 1331–1356 (1997)

Klöckner, A., Barnett, A.H., Greengard, L., O’Neil, M.: Quadrature by Expansion: A New Method for the Evaluation of Layer Potentials. J. Comput. Phys. (2012). In press

Kolm, P., Rokhlin, V.: Numerical quadratures for singular and hypersingular integrals. Comput. Math. Appl. 41, 327–352 (2001)

Kress, R.: On constant-alpha force-free fields in a torus. J. Eng. Math. 20, 323–344 (1986)

Kress, R.: Boundary integral equations in time-harmonic acoustic scattering. Math. Comput. Model. 15, 229–243 (1991)

Kress, R.: Linear Integral Equations, vol. 82 of Applied Mathematical Sciences, 2nd edn. Springer (1999)

Martensen, E.: Über eine methode zum räumlichen neumannschen problem mit einer anwendung für torusartige berandungen. Acta Math. 109, 75–135 (1963)

Martinsson, P., Rokhlin, V.: A fast direct solver for boundary integral equations in two dimensions. J. Comput. Phys. 205, 1–23 (2004)

Nyström, E.: Über die praktische Auflösung von Integralgleichungen mit Andwendungen aug Randwertaufgaben. Acta Math. 54, 185–204 (1930)

Ojala, R.: Towards an all-embracing elliptic solver in 2D. PhD thesis, Department of Mathematics, Lund University, Sweden (2011)

Saad, Y.: Iterative Methods for Sparse Linear Systems. Society for industrial and applied mathematics, 2nd edn. (2003)

Trefethen, L.N.: Spectral Methods in MATLAB, vol. 10 of Software, Environments, and Tools, Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)

Trefethen, L.N.: Approximation Theory and Approximation Practice, SIAM (2012). http://www.maths.ox.ac.uk/chebfun/ATAP

Ying, L., Biros, G., Zorin, D.: A kernel-independent adaptive fast multipole method in two and three dimensions. J. Comput. Phys. 196, 591–626 (2004)

Young, P.M., Hao, S., Martinsson, P.G.: A high-order Nyström discretization scheme for boundary integral equations defined on rotationally symmetric surfaces. J. Comput. Phys. 231, 4142–4159 (2012)