High-order Adaptive Mesh Refinement multigrid Poisson solver in any dimension
Tài liệu tham khảo
Albrecht, 1953, Taylors-Entwicklungen und finite Ausdrücke für Δu und ΔΔu, Z. Angew. Math. Mech., 33, 48, 10.1002/zamm.19530330105
Askham, 2017, An adaptive fast multipole accelerated Poisson solver for complex geometries, J. Comput. Phys., 344, 1, 10.1016/j.jcp.2017.04.063
Barad, 2004, A fourth order accurate adaptive mesh refinement method for Poisson's equation, J. Comput. Phys., 209, 10.1016/j.jcp.2005.02.027
Beatson, 1997, A short course on fast multipole methods, 1
Brix, 2011, Adaptive Multi-Resolution Methods: Practical Issues on Data Structures, Implementation and Parallelization, vol. 34, 151
Cohen, 2001, Maximal spaces with given rate of convergence for thresholding algorithms, Appl. Comput. Harmon. Anal., 11, 167, 10.1006/acha.2000.0333
Collatz, 1966
Cottet, 2018, Semi-Lagrangian particle methods for high-dimensional Vlasov–Poisson systems, J. Comput. Phys., 365, 362, 10.1016/j.jcp.2018.03.042
Del Sarto, 2017, A multigrid AMR algorithm for the study of magnetic reconnection, J. Comput. Phys., 351, 511, 10.1016/j.jcp.2017.08.046
Deriaz, 2020, Compact finite difference schemes of arbitrary order for the Poisson equation in arbitrary dimensions, BIT Numer. Math., 60, 199, 10.1007/s10543-019-00772-5
Deriaz, 2018, Six-dimensional adaptive simulation of the Vlasov equations using a hierarchical basis, SIAM Multiscale Model. Simul., 16, 583, 10.1137/16M1108649
Deriaz, 2009, Orthogonal Helmholtz decomposition in arbitrary dimension using divergence-free and curl-free wavelets, Appl. Comput. Harmon. Anal., 26, 249, 10.1016/j.acha.2008.06.001
Deslauriers, 1989, Symmetric iterative interpolation processes, Constr. Approx., 5, 49, 10.1007/BF01889598
Duarte, 2015, A numerical strategy to discretize and solve the Poisson equation on dynamically adapted multiresolution grids for time-dependent streamer discharge simulations, J. Comput. Phys., 289, 129, 10.1016/j.jcp.2015.02.038
Genovese, 2007, Efficient and accurate three-dimensional Poisson solver for surface problems, J. Chem. Phys., 127, 10.1063/1.2754685
Gholami, 2016, FFT, FMM, or multigrid? A comparative study of state-of-the-art Poisson solvers for uniform and nonuniform grids in the unit cube, SIAM J. Sci. Comput., 38, C280, 10.1137/15M1010798
Greengard, 1996, A direct adaptive Poisson solver of arbitrary order accuracy, J. Comput. Phys., 125, 415, 10.1006/jcph.1996.0103
Hackbusch, 1985
Hejlesen, 2013, A high order solver for the unbounded Poisson equation, J. Comput. Phys., 252, 458, 10.1016/j.jcp.2013.05.050
Hosseinverdi, 2018, An efficient, high-order method for solving Poisson equation for immersed boundaries: combination of compact difference and multiscale multigrid methods, J. Comput. Phys., 374, 912, 10.1016/j.jcp.2018.08.006
Kahane, 1995
Kronbichler, 2012, High accuracy mantle convection simulation through modern numerical methods, Geophys. J. Int., 191, 12, 10.1111/j.1365-246X.2012.05609.x
Isaac, 2014, Recursive algorithms for distributed forests of octrees, SIAM J. Sci. Comput., 37, C497, 10.1137/140970963
Iserles, 1996
McKenney, 1995, A fast Poisson solver for complex geometries, J. Comput. Phys., 118, 348, 10.1006/jcph.1995.1104
Miniati, 2007, Block structured adaptive mesh and time refinement for hybrid, hyperbolic+N-body systems, J. Comput. Phys., 227, 400, 10.1016/j.jcp.2007.07.035
Popinet, 2003, Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Comput. Phys., 190, 572, 10.1016/S0021-9991(03)00298-5
Sampath, 2010, A parallel geometric multigrid method for finite elements on octree meshes, SIAM J. Sci. Comput., 32, 1361, 10.1137/090747774
Schaffer, 1984, Higher order multi-grid methods, Math. Comput., 43, 89
Spotz, 1995, High-order compact finite difference methods, 397
Teyssier, 2002, Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES, Astron. Astrophys., 385, 337, 10.1051/0004-6361:20011817
Theillard, 2013, A multigrid method on non-graded adaptive octree and quadtree Cartesian grids, J. Comput. Phys., 55, 1