High microsatellite instability (MSI-H) colorectal carcinoma: a brief review of predictive biomarkers in the era of personalized medicine
Tóm tắt
Từ khóa
Tài liệu tham khảo
Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):5–29. doi: 10.3322/caac.21254
Dienstmann R, Salazar R, Tabernero J (2014) The evolution of our molecular understanding of colorectal cancer: what we are doing now, what the future holds, and how tumor profiling is just the beginning. Am Soc Clin Oncol Educ Book. doi: 10.14694/EdBook_AM.2014.34.91
Guinney J, Dienstmann R, Wang X et al (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21(11):1350–1356. doi: 10.1038/nm.3967
Devaud N, Gallinger S (2013) Chemotherapy of MMR-deficient colorectal cancer. Fam Cancer 12(2):301–306. doi: 10.1007/s10689-013-9633-z
Cheng L (2009) Molecular genetic pathology, 1st edn. Humana Press, New Jersey, pp 455–457.
Hewish M, Lord CJ, Martin SA, Cunningham D, Ashworth A (2010) Mismatch repair deficient colorectal cancer in the era of personalized treatment. Nat Rev Clin Oncol 7(4):197–208. doi: 10.1038/nrclinonc.2010.18
Ligtenberg MJ, Kuiper RP, Chan TL et al (2009) Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat Genet 41(1):112–117. doi: 10.1038/ng.283
Valeri N, Gasparini P, Fabbri M et al (2010) Modulation of mismatch repair and genomic stability by miR-155. Proc Natl Acad Sci USA 107(15):6982–6987. doi: 10.1073/pnas.1002472107
Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103(7):2257–2261. doi: 10.1073/pnas.0510565103
Li GM (2013) Decoding the histone code: role of H3K36me3 in mismatch repair and implications for cancer susceptibility and therapy. Cancer Res 73(21):6379–6383. doi: 10.1158/0008-5472.can-13-1870
Li F, Mao G, Tong D et al (2013) The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSα. Cell 153(3):590–600. doi: 10.1016/j.cell.2013.03.025
Smyrk TC, Watson P, Kaul K, Lynch HT (2001) Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer 91(12):2417–2422
Gatalica Z, Torlakovic E (2008) Pathology of the hereditary colorectal carcinoma. Fam Cancer 7(1):15–26. doi: 10.1007/s10689-007-9146-8
Maccaroni E, Bracci R, Giampieri R et al (2015) Prognostic impact of mismatch repair genes germline defects in colorectal cancer patients: are all mutations equal? Oncotarget 6(36):38737–38748. doi: 10.18632/oncotarget.5395
Ribic CM, Sargent DJ, Moore MJ et al (2003) Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 349(3):247–257. doi: 10.1056/NEJMoa022289
Weisenberger DJ, Siegmund KD, Campan M et al (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38(7):787–793. doi: 10.1038/ng1834
Parsons MT, Buchanan DD, Thompson B, Young JP, Spurdle AB (2012) Correlation of tumour BRAF mutations and MLH1 methylation with germline mismatch repair (MMR) gene mutation status: a literature review assessing utility of tumour features for MMR variant classification. J Med Genet 49(3):151–157. doi: 10.1136/jmedgenet-2011-100714
Funkhouser WK Jr, Lubin IM, Monzon FA et al (2012) Relevance, pathogenesis, and testing algorithm for mismatch repair-defective colorectal carcinomas: a report of the association for molecular pathology. J Mol Diagn JMD 14(2):91–103. doi: 10.1016/j.jmoldx.2011.11.001
Senter L, Clendenning M, Sotamaa K et al (2008) The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations. Gastroenterology 135(2):419–428. doi: 10.1053/j.gastro.2008.04.026
Maurel J, Postigo A (2015) Prognostic and predictive biomarkers in colorectal cancer. From the preclinical setting to clinical practice. Curr Cancer Drug Targets 15(8):703–715
Koopman M, Venderbosch S, van Tinteren H et al (2009) Predictive and prognostic markers for the outcome of chemotherapy in advanced colorectal cancer, a retrospective analysis of the phase III randomised CAIRO study. Eur J Cancer 45(11):1999–2006. doi: 10.1016/j.ejca.2009.04.017
Des Guetz G, Schischmanoff O, Nicolas P, Perret GY, Morere JF, Uzzan B (2009) Does microsatellite instability predict the efficacy of adjuvant chemotherapy in colorectal cancer? A systematic review with meta-analysis. Eur J Cancer 45(10):1890–1896. doi: 10.1016/j.ejca.2009.04.018
Rose MG, Farrell MP, Schmitz JC (2002) Thymidylate synthase: a critical target for cancer chemotherapy. Clin Colorectal Cancer 1(4):220–229. doi: 10.3816/CCC.2002.n.003
Jensen SA, Vainer B, Kruhoffer M, Sorensen JB (2009) Microsatellite instability in colorectal cancer and association with thymidylate synthase and dihydropyrimidine dehydrogenase expression. BMC Cancer 9:25. doi: 10.1186/1471-2407-9-25
Bendardaf R, Lamlum H, Ristamaki R, Korkeila E, Syrjanen K, Pyrhonen S (2008) Thymidylate synthase and microsatellite instability in colorectal cancer: implications for disease free survival, treatment response and survival with metastases. Acta Oncol 47(6):1046–1053. doi: 10.1080/02841860701678753
Coppede F, Lopomo A, Spisni R, Migliore L (2014) Genetic and epigenetic biomarkers for diagnosis, prognosis and treatment of colorectal cancer. World J Gastroenterol 20(4):943–956. doi: 10.3748/wjg.v20.i4.943
Romer MU, Jensen NF, Nielsen SL et al (2012) TOP1 gene copy numbers in colorectal cancer samples and cell lines and their association to in vitro drug sensitivity. Scand J Gastroenterol 47(1):68–79. doi: 10.3109/00365521.2011.638393
Negri FV, Azzoni C, Bottarelli L et al (2013) Thymidylate synthase, topoisomerase-1 and microsatellite instability: relationship with outcome in mucinous colorectal cancer treated with fluorouracil. Anticancer Res 33(10):4611–4617
Sonderstrup IM, Nygard SB, Poulsen TS et al (2015) Topoisomerase-1 and -2A gene copy numbers are elevated in mismatch repair-proficient colorectal cancers. Mol Oncol 9(6):1207–1217. doi: 10.1016/j.molonc.2015.02.009
Gatalica Z (2014) Thymidylate synthase over-expression underlies the observed lack of 5-FU therapy benefit for MSI-H colorectal cancers. Ann Oncol 25(suppl 4):iv167–iv209
Gatalica Z, Vijayvergia N, Vranic S, Xiu J, Reddy S, Lynch HT, El-Deiry WS (2015) Therapeutic biomarker differences between MSI-H and MSS colorectal cancers. J Clin Oncol 33(Suppl; abstr 3597)
Zheng CG, Jin C, Ye LC, Chen NZ, Chen ZJ (2015) Clinicopathological significance and potential drug target of O6-methylguanine-DNA methyltransferase in colorectal cancer: a meta-analysis. Tumour Biol 36(8):5839–5848. doi: 10.1007/s13277-015-3254-0
Kaina B, Christmann M, Naumann S, Roos WP (2007) MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair 6(8):1079–1099. doi: 10.1016/j.dnarep.2007.03.008
Nazemalhosseini Mojarad E, Kuppen PJ, Aghdaei HA, Zali MR (2013) The CpG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterol Hepatol Bed Bench 6(3):120–128
Gonzalo V, Lozano JJ, Munoz J et al (2010) Aberrant gene promoter methylation associated with sporadic multiple colorectal cancer. PLoS One 5(1):e8777. doi: 10.1371/journal.pone.0008777
Kaz A, Kim YH, Dzieciatkowski S et al (2007) Evidence for the role of aberrant DNA methylation in the pathogenesis of Lynch syndrome adenomas. Int J Cancer 120(9):1922–1929. doi: 10.1002/ijc.22544
Inno A, Fanetti G, Di Bartolomeo M et al (2014) Role of MGMT as biomarker in colorectal cancer. World J Clin Cases 2(12):835–839. doi: 10.12998/wjcc.v2.i12.835
Shacham-Shmueli E, Beny A, Geva R, Blachar A, Figer A, Aderka D (2011) Response to temozolomide in patients with metastatic colorectal cancer with loss of MGMT expression: a new approach in the era of personalized medicine? J Clin Oncol 29(10):e262–e265. doi: 10.1200/jco.2010.32.0242
Pietrantonio F, de Braud F, Milione M et al (2015) Dose-dense temozolomide in patients with MGMT-silenced chemorefractory colorectal cancer. DOI, Target Oncol. doi: 10.1007/s11523-015-0397-2
Li Y, Lyu Z, Zhao L et al (2015) Prognostic value of MGMT methylation in colorectal cancer: a meta-analysis and literature review. Tumour Biol 36(3):1595–1601. doi: 10.1007/s13277-014-2752-9
Karran P (2001) Mechanisms of tolerance to DNA damaging therapeutic drugs. Carcinogenesis 22(12):1931–1937
Hunter C, Smith R, Cahill DP et al (2006) A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res 66(8):3987–3991. doi: 10.1158/0008-5472.CAN-06-0127
Dionigi G, Bianchi V, Villa F et al (2007) Differences between familial and sporadic forms of colorectal cancer with DNA microsatellite instability. Surg Oncol 16(Suppl 1):S37–S42. doi: 10.1016/j.suronc.2007.10.018
TCGA (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407):330–337. doi: 10.1038/nature11252
Timmermann B, Kerick M, Roehr C et al (2010) Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis. PLoS One 5(12):e15661. doi: 10.1371/journal.pone.0015661
Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520. doi: 10.1056/NEJMoa1500596
Lipson EJ, Forde PM, Hammers HJ, Emens LA, Taube JM, Topalian SL (2015) Antagonists of PD-1 and PD-L1 in cancer treatment. Semin Oncol 42(4):587–600. doi: 10.1053/j.seminoncol.2015.05.013
Herbst RS, Soria JC, Kowanetz M et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528):563–567. doi: 10.1038/nature14011
Taube JM, Klein A, Brahmer JR et al (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20(19):5064–5074. doi: 10.1158/1078-0432.ccr-13-3271
Taube JM, Young GD, McMiller TL et al (2015) Differential expression of immune-regulatory genes associated with PD-L1 display in melanoma: implications for PD-1 pathway blockade. Clin Cancer Res 21(17):3969–3976. doi: 10.1158/1078-0432.ccr-15-0244
Taube JM (2014) Unleashing the immune system: PD-1 and PD-Ls in the pre-treatment tumor microenvironment and correlation with response to PD-1/PD-L1 blockade. Oncoimmunology 3(11):e963413. doi: 10.4161/21624011.2014.963413
Tumeh PC, Harview CL, Yearley JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571. doi: 10.1038/nature13954
de Guillebon E, Roussille P, Frouin E, Tougeron D (2015) Anti program death-1/anti program death-ligand 1 in digestive cancers. World J Gastrointest Oncol 7(8):95–101. doi: 10.4251/wjgo.v7.i8.95
Sunshine J, Taube JM (2015) PD-1/PD-L1 inhibitors. Curr Opin Pharmacol 23:32–38. doi: 10.1016/j.coph.2015.05.011
Llosa NJ, Cruise M, Tam A et al (2015) The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 5(1):43–51. doi: 10.1158/2159-8290.cd-14-0863
Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454. doi: 10.1056/NEJMoa1200690
Yamamoto H, Imai K (2015) Microsatellite instability: an update. Arch Toxicol 89(6):899–921. doi: 10.1007/s00204-015-1474-0