High irradiance compensated with CO2 enhances the efficiency of Haematococcus lacustris growth
Tài liệu tham khảo
Kaewpintong, 2007, Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor, Bioresour. Technol., 98, 288, 10.1016/j.biortech.2006.01.011
Lorenz, 2000, Commercial potential for Haematococcus microalgae as a natural source of astaxanthin, Trends Biotechnol., 18, 160, 10.1016/S0167-7799(00)01433-5
Ambati, 2014, Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—a review, Mar. Drugs, 12, 128, 10.3390/md12010128
Hagen, 2001, Effect of cultivation parameters on growth and pigment biosynthesis in flagellated cells of Haematococcus pluvialis, J. Appl. Phycol., 13, 79, 10.1023/A:1008105909044
Fábregas, 2001, Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis, J. Biotechnol., 89, 65, 10.1016/S0168-1656(01)00289-9
Tjahjono, 1994, Hyper-accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures, Biotechnol. Lett., 16, 133, 10.1007/BF01021659
Hata, 2001, Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture, J. Appl. Phycol., 13, 395, 10.1023/A:1011921329568
Sarada, 2002, Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions, Process Biochem., 37, 623, 10.1016/S0032-9592(01)00246-1
Borowitzka, 1991, Culture of the astaxanthin-producing green algaHaematococcus pluvialis 1. Effects of nutrients on growth and cell type, J. Appl. Phycol., 3, 295, 10.1007/BF02392882
Fan, 1994, Effect of temperature and irradiance on growth of Haematococcus pluvialis (chlorophyceae)1, J. Phycol., 30, 829, 10.1111/j.0022-3646.1994.00829.x
Kobayashi, 2000, Protective role of astaxanthin against u.V.-B irradiation in the green alga Haematococcus pluvialis, Biotechnol. Lett., 22, 177, 10.1023/A:1005649609839
Tripathi, 2002, Effect of culture conditions on growth of green alga — Haematococcus pluvialis and astaxanthin production, Acta Physiol. Plant., 24, 323, 10.1007/s11738-002-0058-9
Orosa, 2001, Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth, Biotechnol. Lett., 23, 373, 10.1023/A:1005624005229
Garcia-Malea, 2005, Modelling of growth and accumulation of carotenoids in Haematococcus pluvialis as a function of irradiance and nutrients supply, Biochem. Eng. J., 26, 107, 10.1016/j.bej.2005.04.007
Grima, 1994, A mathematical model of microalgal growth in light-limited chemostat culture, J. Chem. Technol. Biotechnol: Int. Res. Process Environ. Clean Technol., 61, 167, 10.1002/jctb.280610212
Katsuda, 2004, Astaxanthin production by Haematococcus pluvialis under illumination with leds, Enzyme Microb. Technol., 35, 81, 10.1016/j.enzmictec.2004.03.016
Jeon, 2006, Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis, Enzyme Microb. Technol., 39, 490, 10.1016/j.enzmictec.2005.12.021
Wahidin, 2013, The influence of light intensity and photoperiod on the growth and lipid content of microalgae nannochloropsis sp, Bioresour. Technol., 10.1016/j.biortech.2012.11.032
Orosa, 2005, Analysis and enhancement of astaxanthin accumulation in Haematococcus pluvialis, Bioresour. Technol., 96, 373, 10.1016/j.biortech.2004.04.006
Fan, 1994, Effect of temperature and irradiance on growth of Haematococcus-pluvialis (chlorophyceae), J. Phycol., 30, 829, 10.1111/j.0022-3646.1994.00829.x
Tikhonov, 2015, Induction events and short-term regulation of electron transport in chloroplasts: an overview, Photosynth. Res., 125, 65, 10.1007/s11120-015-0094-0
Chekanov, 2017, Effects of CO2 enrichment on primary photochemistry, growth and astaxanthin accumulation in the chlorophyte Haematococcus pluvialis, J. Photochem. Photobiol. B, 17158
Wang, 2011, Investigation of the maximum quantum yield of PS II in Haematococcus pluvialis cell cultures during growth: effects of chemical or high-intensity light treatment, J. Photochem. Photobiol. B, 104, 394, 10.1016/j.jphotobiol.2011.04.006
de Morais, 2007, Biofixation of carbon dioxide by spirulina sp and scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor, J. Biotechnol., 129, 439, 10.1016/j.jbiotec.2007.01.009
López, 2013, Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: state of the art and challenges, Appl. Microbiol. Biotechnol., 97, 2277, 10.1007/s00253-013-4734-z
Solovchenko, 2013, High-CO2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation, Biotechnol. Lett., 35, 1745, 10.1007/s10529-013-1274-7
Wang, 2019, High antioxidant capability interacts with respiration to mediate two alexandrium species growth exploitation of photoperiods and light intensities, Harmful Algae, 8226
Zhang, 2013, Effect of oxidative stress induced by brevibacterium sp. BS01 on a hab causing species-alexandrium tamarense, PLoS One, 8, e63018, 10.1371/journal.pone.0063018
Choi, 2002, Evaluation of factors promoting astaxanthin production by a unicellular green alga, Haematococcus pluvialis, with fractional factorial design, Biotechnol. Prog., 18, 1170, 10.1021/bp025549b
Torzillo, 2003, Interplay between photochemical activities and pigment composition in an outdoor culture of Haematococcus pluvialis during the shift from the green to red stage, J. Appl. Phycol., 15, 127, 10.1023/A:1023854904163
Bąba, 2016, Acclimatization of photosynthetic apparatus of tor grass (brachypodium pinnatum) during expansion, PLoS One, 11, e0156201, 10.1371/journal.pone.0156201
Vega-Estrada, 2005, Haematococcus pluvialis cultivation in split-cylinder internal-loop airlift photobioreactor under aeration conditions avoiding cell damage, Appl. Microbiol. Biotechnol., 68, 31, 10.1007/s00253-004-1863-4
Wang, 2013, Effect of initial biomass density on growth and astaxanthin production of Haematococcus pluvialis in an outdoor photobioreactor, J. Appl. Phycol., 25, 253, 10.1007/s10811-012-9859-4
Lee, 2015, Enhanced carbon dioxide fixation of Haematococcus pluvialis using sequential operating system in tubular photobioreactors, Process Biochem., 50, 1091, 10.1016/j.procbio.2015.03.021
Chekanov, 2019, Non-photochemical quenching in the cells of the carotenogenic chlorophyte Haematococcus lacustris under favorable conditions and under stress, Biochim. Biophys. Acta (BBA)-Gen. Subj., 1863, 1429, 10.1016/j.bbagen.2019.05.002
Gu, 2014, Quantitative proteomic analysis of thylakoid from two microalgae (Haematococcus pluvialis and Dunaliella salina) reveals two different high light-responsive strategies, Sci. Rep., 10.1038/srep06661
Chekanov, 2016, Modulation of photosynthetic activity and photoprotection in Haematococcus pluvialis cells during their conversion into haematocysts and back, Photosynth. Res., 128, 313, 10.1007/s11120-016-0246-x
Boussiba, 1991, Astaxanthin accumulation in the green alga Haematococcus pluvialis, Plant Cell Physiol., 32, 1077, 10.1093/oxfordjournals.pcp.a078171
Chekanov, 2014, Accumulation of astaxanthin by a new Haematococcus pluvialis strain BM1 from the White Sea coastal rocks (Russia), Mar. Drugs, 12, 4504, 10.3390/md12084504
Bilanovic, 1988, Flocculation of microalgae with cationic polymers — effects of medium salinity, Biomass, 17, 65, 10.1016/0144-4565(88)90071-6
Tikhonov, 2015, Induction events and short-term regulation of electron transport in chloroplasts: an overview, Photosynth. Res., 125, 65, 10.1007/s11120-015-0094-0
Fan, 1998, Does astaxanthin protect Haematococcus against light damage?, Zeitschrift für Naturforschung C, 53, 93, 10.1515/znc-1998-1-217
Maxwell, 2000, Chlorophyll fluorescence—a practical guide, J. Exp. Bot., 51, 659, 10.1093/jexbot/51.345.659