High-frequency performance of ferromagnetic shape memory alloys

Oana-Zenaida Pascan1,2, Yongjun He1, Ziad Moumni1,2, Weihong Zhang2
1Institute of Mechanical Sciences and Industrial Applications (IMSIA), ENSTA ParisTech, CNRS, CEA, EDF, Université Paris-Saclay, Palaiseau, France
2School of Mechanical Engineering, Northwestern Polytechnic University, Xi’an, China

Tóm tắt

We conduct systematic dynamic experiments on the martensite reorientation in different samples of the single crystal Ni–Mn–Ga Ferromagnetic Shape Memory Alloy (FSMA) driven by a high-frequency magnetic field and a compressive stress. It is found that the output reversible strain strongly depends on the loading frequency, with the maximum output strain up to 6 % at the resonance frequency; and this resonance frequency can be changed by modifying the setting of the compressive stress (the pre-stress level). That provides an alternative way to control/design the system’s optimal working frequency range, besides modifying the spring stiffness and sample geometry. On the other hand, temperature rise accompanies the high-frequency field-induced strain because of the energy dissipation of the martensite twinning and eddy current, which depend on both the frequency and the sample geometry. With these results, some guidelines for improving the FSMA engineering designs are given and some challenging issues for further theoretical study such as the magneto–thermal–mechanical coupling are pointed out.

Từ khóa


Tài liệu tham khảo

Chernenko V, L’vov V, Müllner P, Kostorz G, Takagi T (2004) Magnetic-field-induced superelasticity of ferromagnetic thermoelastic martensites: experiment and modeling. Phys Rev B. doi:10.1103/PhysRevB.69.134410 Glavatska N, Mogylny G, Glavatskiy I, Gavriljuk V (2002) Temperature stability of martensite and magnetic field induced strain in Ni–Mn–Ga. Scr Mater 46:605–610 Heczko O, Sozinov A, Ullakko K (2000) Giant field-induced reversible strain in magnetic shape memory NiMnGa alloy. Magn IEEE Trans 36:3266–3268 Heczko O, Straka L (2003) Temperature dependence and temperature limits of magnetic shape memory effect. J Appl Phys 94:7139. doi:10.1063/1.1626800 Henry C (2002) Dynamic actuation properties of Ni–Mn–Ga Ferromagnetic Shape Memory Alloys, Ph.D. thesis. Massachusetts Institute of Technology He YJ, Chen X, Moumni Z (2011) Two-dimensional analysis to improve the output stress in ferromagnetic shape memory alloys. J Appl Phys 110:063905 He YJ, Chen X, Moumni Z (2012) Reversible-strain criteria of ferromagnetic shape memory alloys under cyclic 3D magneto–mechanical loadings. J Appl Phys 112:033902. doi:10.1063/1.4739711 Lai YW (2009) Magnetic microstructure and actuation dynamics of NiMnGa magnetic shape memory materials, Ph.D. thesis. University of Dresden Lai Y-W, Schäfer R, Schultz L, McCord J (2008) Direct observation of AC field-induced twin-boundary dynamics in bulk NiMnGa. Acta Mater 56:5130–5137. doi:10.1016/j.actamat.2008.06.030 Marioni MA, O’Handley RC, Allen SM, Hall SR, Paul DI, Richard ML, Feuchtwanger J, Peterson BW, Chambers JM, Techapiesancharoenkij R (2005) The ferromagnetic shape-memory effect in Ni–Mn–Ga. J Magn Magn Mater 290–291:35–41. doi:10.1016/j.jmmm.2004.11.156 Müllner P, Chernenko VA, Kostorz G (2003) A microscopic approach to the magnetic-field-induced deformation of martensite (magnetoplasticity). J Magn Magn Mater 267:325–334. doi:10.1016/S0304-8853(03)00400-1 Murray SJ, Marioni M, Allen SM, O’handley RC, Lograsso TA (2000) 6 % magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga. Appl Phys Lett 77:886–888 Pascan O (2015) Dynamic behaviours of NiMnGa Ferromagnetic Shape Memory Alloys, Ph.D. thesis. ENSTA Paristech Pascan O, He YJ, Moumni Z, Zhang WH (2015) Temperature rise of high-frequency martensite reorientation via Type II twin boundary motion in NiMnGa Ferromagnetic Shape Memory Alloy. Scr Mater 104:71–74 Pascan O-Z, He YJ, Moumni Z, Zhang W (2016) High-frequency martensite reorientation in Ni–Mn–Ga—Temperature rise and its influence. In: 24th International Congress of Theoretical and Applied Mechanics (ICTAM 2016), Montreal, 21–26 Aug Straka L, Soroka A, Seiner H, Hänninen H, Sozinov A (2012) Temperature dependence of twinning stress of Type I and Type II twins in 10 M modulated Ni–Mn–Ga martensite. Scr Mater 67:25–28. doi:10.1016/j.scriptamat.2012.03.012 Techapiesancharoenkij R, Kostamo J, Allen SM, O’Handley RC (2009) Frequency response of acoustic-assisted Ni–Mn–Ga ferromagnetic-shape-memory-alloy actuator. J Appl Phys 105:093923. doi:10.1063/1.3125307 Techapiesancharoenkij R, Kostamo J, Allen SM, O’Handley RC (2011) The effect of magnetic stress and stiffness modulus on resonant characteristics of Ni–Mn–Ga ferromagnetic shape memory alloy actuators. J Magn Magn Mater 323:3109–3116. doi:10.1016/j.jmmm.2011.06.066 Techapiesancharoenkij R, Kostamo J, Simon J, Bono D, Allen SM, O’Handley RC (2008) Acoustic-assisted magnetic-field-induced strain and stress output of Ni–Mn–Ga single crystal. Appl Phys Lett 92:032506. doi:10.1063/1.2837195 Tickle R, James RD (1999) Magnetic and magneto mechanical properties of Ni 2 MnGa. J Magn Magn Mater 195:627–638 Ullakko K, Huang JK, Kantner C, O’Handley RC, Kokorin VV (1996) Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl Phys Lett 69:1966–1968