High-fat diet or low-protein diet changes peritoneal macrophages function in mice

Nutrire - Tập 41 Số 1 - 2016
Ed Wilson Santos1, Daniel Capucho de Oliveira1, Araceli Aparecida Hastreiter1, Jackeline Soares de Oliveira Beltran1, Marcelo Macedo Rogero2, Ricardo Ambrósio Fock1, Primavera Borelli1
1Experimental Hematology Laboratory, Department of Clinical e Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Avenida Lineu Prestes, 580 – Bloco 17, São Paulo, SP, 05508-900, Brazil
2Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil

Tóm tắt

Abstract Background Obesity and protein malnutrition are major food problems nowadays, affecting billions of people around the world. The nutrition transition that has occurred in recent decades is changing the nutritional profile, reducing malnutrition and increasing the percentage of obese people. The innate immune response is greatly influenced by diet, with significant changes in both malnutrition and obesity. Therefore, we investigate the effects of protein malnutrition and obesity in nutritional and immunological parameters in mice. Results Peritoneal macrophages of malnourished animals showed reduced functions of adhesion, spreading, and fungicidal activity; production of hydrogen peroxide and nitric oxide were lower, reflecting changes in the innate immune response. However, the high-fat animals had macrophage functions slightly increased. Conclusions Animals subjected to low-protein diet have immunosuppression, and animals subjected to high-fat diet increased visceral adipose tissue and the presence of an inflammatory process with increased peritoneal macrophage activity and similar systemic changes to metabolic syndrome.

Từ khóa


Tài liệu tham khảo

Monteiro CA, Levy RB, Claro RM, DE Castro IRR, Cannon G. Increasing consumption of ultra-processed foods and likely impact on human health: evidence from Brazil. Public Health Nutr. 2011;14(1):5–13.

FAO (Food and Agriculture Organization). La subnutricion en el mundo en 2010. El estado de la inseguridad alimentaria en el mundo. Roma, 2010. http://www.fao.org/3/a-i4646s.pdf. Accessed 16 Oct 2015.

WHO (World Health Organization). http://www.who.int/nutgrowthdb/estimates2014/en/. 2010. Accessed 16 Oct 2015.

Cuppari L, Coord. Nutrição: nas doenças crônica não-transmissíveis. Barueri: Manole; 2009. p. 512.

Popkin BM, Adair LS, Ng SW. Global nutrition transition and the pandemic of obesity in developing countries. Nutrition Reviews. 2012;70(1):3–21.

Borelli P, Blatt S, Pereira J, Maurino BB, Tsujita M, Souza AC, Xavier JG, Fock RA. Reduction of erythroid progenitors in protein energy malnutrition. Brit J Nutr. 2007;97:307–14.

Vituri CL, Borelli P, Alvarez-Silva M, Tretin AZ. Alteration of the bone marrow in extracellular matrix in mice undernourished. Braz J Med Biol Res. 2001;33:889–95.

Borelli P, Barros FEV, Nakajima K, Blatt SL, Beutler B, Pereira J, Tsujita M, Favero GM, Fock RA. Protein-energy malnutricion halts hemopoietic progenitor cells in the G0/G1 cell cycle stage, thereby altering cell production rates. Braz J Med Biol Res. 2009;42(6):523–30.

Borelli P, Blatt SL, Rogero MM, Fock RA. Haematological alterations in protein malnutricion. Rev Bras Hematol Hemoter. 2004;26(1):49–56.

Fock RA, Vinolo MAR, SÁ Rocha VM, SÁ Rocha LC, Borelli P. Protein-energy malnutrition decreases the expression of TLR-4/MD-2 and CD14 receptors in peritoneal macrophages and reduces the synthesis of TNF-α in response to lipopolysaccharide (LPS) in mice. Cytokine. 2007;40:105–14.

Chandra RK. Nutrition and the immune system: an introduction. Am J Clin Nutr. 1997;66(2):460–3.

Souza IP, Kang HC, Nardinelli L, Borelli P. Desnutrição protéica: efeito sobre o espraiamento, fagocitose e atividade fungicida de macrófagos peritoniais. Rev Bras Cienc Farm. 2001;37(2):143–51.

Schaffler A, Scholmerich J, Salzberger B. Adipose tissue as an immunological organ: toll-like receptors, C1q/TNFs and CTRPs. Trends Immunol. 2007;28:393–9.

Patel PS, Buras ED, Balasubramanyam A. The role of the immune system in obesity and insulin resistance. J Obes. 2013;2013(616193)1–9.

Silveira MR, Frollini AB, Verlengia R, Cavaglieri CR. Correlação entre obesidade, adipocinas e sistema imunológico. Rev Bras Cineant Desemp Hum. 2009;11(4):466–72.

Ramalho R, Guimaraes C. Papel do tecido adiposo e dos macrófagos no estado de inflamação crônica associada a obesidade. Acta Med Port. 2008;21:489–96.

Saaman MC. The macrophage at the intersection of immunity and metabolism in obesity. Diabetol Meabolic Synd, 2011;3:29.

Zeyda M, Stulnig TM. Adipose tissue macrophages. Immunol Lett. 2007;112(2):61–7.

Ghanin H, Aljada A, Hofmeyer D, Syed T, Mohanty P, Dandona P. Circulating mononuclear cells in the obese are in a pro-inflammatory state. Circulation. 2004;110:1564–71.

Ogawa M. Differentiation and proliferation of hematopoietic stem cells. Blood. 1993;84:2844–53.

Smith CMD. Hematopoietic stem cells and hematopoiesis. Cancer Control. 2003;10(1):9–16.

Oliveira DC, Hastreiter AA, Mello AS, Beltran JSO, Santos EW, Borelli P, Fock RA. The effects of protein malnutrition on the TNF-RI and NF-kB expression via the TNF-α signaling pathway. Cytokine. 2014;69(2):218–25.

Borges MC, Vinolo MA, Crisma AR, Fock RA, Borelli P, Tirapegui J, Curi R, Rogero MM. High-fat diet blunts activation of the nuclear factor-kB signaling pathway in lipopolysaccharide-stimulated peritoneal macrophages of Wistar rats. Nutrition. 2013;29(2):443–9.

Reeves PG, Nielsen FH, Fahey GC. AIN-93 purified diets for laboratory rodents: final repport of the American Institute of Nutrition Ad Hoc Writing. J Nutr. 1993;1:1939–51.

Santos EW, Oliveira DC, Hastreiter A, Beltran JS, Silva G, Fock RA, Borelli P. Effects of low protein or high fat diets in hematological and immunological parameters in murine model. Braz J Pharm Sci. 2013;49(1):10.

Rogers P, Webb GP. Estimation of body fat in normal and obese mice. Br J Nutr. 1980;43:83–6.

Herscowitz HB, Holden HT, Belantl JA, Ghaffar A. Manual of macrophage methodology: collection, characterization, and function. M. Dekker: The University of Michigan; 1981. p. 531.

Griess P. Bemerkungen zu der abhandlung der H.H. Weselsky und Benedikt “Ueber einige azoverbindungen.” Chem. Ber. 1879;12:426–8.

Pick E, Mizel D. Rapid microassays for measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J Immunol Meth. 1981;46:211–26.

Picardi PK, Calegari VC, Prada PD, Moraes JC, Araujo E, Marcondes CCG, et al. Reduction of hypothalamic protein tyrosine phosphatase improves insulin and leptin resistance in diet-induced obese rats. Endocrinology. 2008;149(8):3870–80.

Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra DE, et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci. 2009;29(2):359–70.

Silva G, Tsujita M, Santos EW, Beltran J, Borelli P. Role of AKT/mTOR pathway in fibronectin expression mediated by protein malnutrition. Exp Hematol. 2014;42(8):60.

Milner JJ, Beck MA. The impact of obesity on the immune response to infection. Proc Nutr Soc. 2012;71:298–306.

Marcos A, Nova E, Monteiro CA. Changes in the immune system are conditioned by nutrition. Eur J Clin Nutr. 2003;57(1):66–9.

Crisma AR. Avaliação da hemopoese e da resposta imune inata mediada por macrófagos em camundongos submetidos à recuperação nutricional após desnutrição protéica. 2010. Tese (Doutorado) – Faculdade de Ciências Farmacêuticas. São Paulo: Universidade de São Paulo; 2010.

Greenberg S, Grinstein S. Phagocytosis and innate immunity. Curr Opin Immunol. 2002;14(1):136–45.

Flannagan RS, Harrison RE, Yip CM, Jaqaman K, Grinstein S. Dynamic macrophage “probing” is required for the efficient capture of phagocytic targets. J Cell Biol. 2010;191(6):1205–18.

May RC, Machesky LM. Phagocytosis and the actin cytoskeleton. J Cell Sci. 2001;114(6):1061–77.

Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 1999;17:593–623.

Borelli P, Nardinelli L. Protein calorie-malnutrition a decreased in the macrophage’s respiratory burst capacity. Rev Bras Cienc Farm. 2001;37:51–60.

Redmond HP, Gallagher HJ, Shou J, Daly JM. Antigen presentation in protein-energy malnutrition. Cell Immunol. 1995;163(1):80–7.

Anstead GM, Chandrasekar B, Zhang Q, Melby PC. Multinutrient undernutrition dysregulates the resident macrophage pro-inflammatory cytokine network, nuclear factor-kappaB activation, and nitric oxide production. J Leukoc Biol. 2003;74(6):982–91.

Cerqueira NF, Yoshida WB. Óxido nítrico: revisão. Acta Cir Bras. 2002;17(6):417–23.

Petri A, Weitnauer C, Gorlach A. Receptor activation of NADPH oxidases. Antioxid Redox Signal. 2010;13(4):467–87.

Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116(6):1494–505.

Almeida ET, Mauro AE, Santana A, Godoy Netto AV, Carlos IZ. Emprego de compostos organometálicos mononucleares de paládio na ativação de macrófagos peritoneais de camundongos. Química Nova. 2005;28(3):405–8.

Matsuda M, Shimomura I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis and câncer. Obes Res Clin Pract. 2013;7(5):330–41.