High-fat diet induced obesity alters Dnmt1 and Dnmt3a levels and global DNA methylation in mouse ovary and testis

Gozde Sukur1, Fatma Uysal2, Ozgur Cınar3
1Ankara University Biotechnology Institute, Kecioren, Turkey
2Department of Histology and Embryology, Ankara Medipol University School of Medicine, Altindag, Turkey
3Center for Assisted Reproduction, Ankara University School of Medicine, Mamak, Turkey

Tóm tắt

Từ khóa


Tài liệu tham khảo

Atzmon Y, Shoshan-Karchovsky E, Michaeli M, Aslih N, Shrem G, Ellenbogen A, Shalom-Paz E (2017) Obesity results with smaller oocyte in in vitro fertilization/intracytoplasmic sperm injection cycles—a prospective study. J Assist Reprod Genet 34(9):1145–1151. https://doi.org/10.1007/s10815-017-0975-6

Barbagallo F, Condorelli RA, Mongioi LM, Cannarella R, Cimino L, Magagnini MC, Crafa A, La Vignera S, Calogero AE (2021) Molecular mechanisms underlying the relationship between obesity and male infertility. Metabolites 11(12):840. https://doi.org/10.3390/metabo11120840

Campion J, Milagro FI, Martinez JA (2009) Individuality and epigenetics in obesity. Obes Rev 10(4):383–392. https://doi.org/10.1111/j.1467-789X.2009.00595.x

Catalano PM, Shankar K (2017) Obesity and pregnancy: mechanisms of short term and long term adverse consequences for mother and child. BMJ 356:j1. https://doi.org/10.1136/bmj.j1

Cheong Y, Sadek KH, Bruce KD, Macklon N, Cagampang FR (2014) Diet-induced maternal obesity alters ovarian morphology and gene expression in the adult mouse offspring. Fertil Steril 102(3):899–907. https://doi.org/10.1016/j.fertnstert.2014.06.015

Collaboration NCDRF (2016) Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387(10026):1377–1396. https://doi.org/10.1016/S0140-6736(16)30054-X

Dag ZO, Dilbaz B (2015) Impact of obesity on infertility in women. J Turk Ger Gynecol Assoc 16(2):111–117. https://doi.org/10.5152/jtgga.2015.15232

Davidson LM, Millar K, Jones C, Fatum M, Coward K (2015) Deleterious effects of obesity upon the hormonal and molecular mechanisms controlling spermatogenesis and male fertility. Hum Fertil (Camb) 18(3):184–193. https://doi.org/10.3109/14647273.2015.1070438

Dean W, Santos F, Reik W (2003) Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Semin Cell Dev Biol 14(1):93–100. https://doi.org/10.1016/s1084-9521(02)00141-6

Deshpande SSS, Nemani H, Balasinor NH (2021) High fat diet-induced- and genetically inherited- obesity differential alters DNA demethylation pathways in the germline of adult male rats. Reprod Biol 21(3):100532. https://doi.org/10.1016/j.repbio.2021.100532

Fullston T, Ohlsson Teague EM, Palmer NO, DeBlasio MJ, Mitchell M, Corbett M, Print CG, Owens JA, Lane M (2013) Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J 27(10):4226–4243. https://doi.org/10.1096/fj.12-224048

Fullston T, McPherson NO, Owens JA, Kang WX, Sandeman LY, Lane M (2015) Paternal obesity induces metabolic and sperm disturbances in male offspring that are exacerbated by their exposure to an obesogenic diet. Physiol Rep 3(3):e12336. https://doi.org/10.14814/phy2.12336

Huang Q, Ma C, Chen L, Luo D, Chen R, Liang F (2018) Mechanistic insights into the interaction between transcription factors and epigenetic modifications and the contribution to the development of obesity. Front Endocrinol (Lausanne) 9:370. https://doi.org/10.3389/fendo.2018.00370

Kageyama S, Liu H, Kaneko N, Ooga M, Nagata M, Aoki F (2007) Alterations in epigenetic modifications during oocyte growth in mice. Reproduction 133(1):85–94. https://doi.org/10.1530/REP-06-0025

Kasum M, Oreskovic S, Cehic E, Lila A, Ejubovic E, Soldo D (2018) The role of female obesity on in vitro fertilization outcomes. Gynecol Endocrinol 34(3):184–188. https://doi.org/10.1080/09513590.2017.1391209

Kroes M, Osei-Assibey G, Baker-Searle R, Huang J (2016) Impact of weight change on quality of life in adults with overweight/obesity in the United States: a systematic review. Curr Med Res Opin 32(3):485–508. https://doi.org/10.1185/03007995.2015.1128403

Kurihara Y, Kawamura Y, Uchijima Y, Amamo T, Kobayashi H, Asano T, Kurihara H (2008) Maintenance of genomic methylation patterns during preimplantation development requires the somatic form of DNA methyltransferase 1. Dev Biol 313(1):335–346. https://doi.org/10.1016/j.ydbio.2007.10.033

Lainez NM, Coss D (2019) Obesity, neuroinflammation, and reproductive function. Endocrinology 160(11):2719–2736. https://doi.org/10.1210/en.2019-00487

Liu Y, Ding Z (2017) Obesity, a serious etiologic factor for male subfertility in modern society. Reproduction 154(4):R123–R131. https://doi.org/10.1530/REP-17-0161

Lucifero D, Mann MR, Bartolomei MS, Trasler JM (2004) Gene-specific timing and epigenetic memory in oocyte imprinting. Hum Mol Genet 13(8):839–849. https://doi.org/10.1093/hmg/ddh104

Marques CJ, Joao Pinho M, Carvalho F, Bieche I, Barros A, Sousa M (2011) DNA methylation imprinting marks and DNA methyltransferase expression in human spermatogenic cell stages. Epigenetics 6(11):1354–1361. https://doi.org/10.4161/epi.6.11.17993

Maugeri A (2020) The effects of dietary interventions on DNA methylation: implications for obesity management. Int J Mol Sci 21(22):8670. https://doi.org/10.3390/ijms21228670

Mitchell M, Armstrong DT, Robker RL, Norman RJ (2005) Adipokines: implications for female fertility and obesity. Reproduction 130(5):583–597. https://doi.org/10.1530/rep.1.00521

Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19(3):219–220. https://doi.org/10.1038/890

Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257. https://doi.org/10.1016/s0092-8674(00)81656-6

Omisanjo OA, Biermann K, Hartmann S, Heukamp LC, Sonnack V, Hild A, Brehm R, Bergmann M, Weidner W, Steger K (2007) DNMT1 and HDAC1 gene expression in impaired spermatogenesis and testicular cancer. Histochem Cell Biol 127(2):175–181. https://doi.org/10.1007/s00418-006-0234-x

Ooi SL, Henikoff S (2007) Germline histone dynamics and epigenetics. Curr Opin Cell Biol 19(3):257–265. https://doi.org/10.1016/j.ceb.2007.04.015

Ozanne SE (2015) Epigenetic signatures of obesity. N Engl J Med 372(10):973–974. https://doi.org/10.1056/NEJMcibr1414707

Pan Z, Zhang J, Li Q, Li Y, Shi F, Xie Z, Liu H (2012) Current advances in epigenetic modification and alteration during mammalian ovarian folliculogenesis. J Genet Genom 39(3):111–123. https://doi.org/10.1016/j.jgg.2012.02.004

Potabattula R, Dittrich M, Schorsch M, Hahn T, Haaf T, El Hajj N (2019) Male obesity effects on sperm and next-generation cord blood DNA methylation. PLoS ONE 14(6):e0218615. https://doi.org/10.1371/journal.pone.0218615

Practice Committee of the American Society for Reproductive Medicine. Electronic address aao, Practice Committee of the American Society for Reproductive M (2021) Obesity and reproduction: a committee opinion. Fertil Steril 116(5):1266–1285. https://doi.org/10.1016/j.fertnstert.2021.08.018

Rao KR, Lal N, Giridharan NV (2014) Genetic & epigenetic approach to human obesity. Indian J Med Res 140(5):589–603

Rhee JS, Saben JL, Mayer AL, Schulte MB, Asghar Z, Stephens C, Chi MM, Moley KH (2016) Diet-induced obesity impairs endometrial stromal cell decidualization: a potential role for impaired autophagy. Hum Reprod 31(6):1315–1326. https://doi.org/10.1093/humrep/dew048

Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6(8):597–610. https://doi.org/10.1038/nrg1655

Shah DK, Missmer SA, Berry KF, Racowsky C, Ginsburg ES (2011) Effect of obesity on oocyte and embryo quality in women undergoing in vitro fertilization. Obstet Gynecol 118(1):63–70. https://doi.org/10.1097/AOG.0b013e31821fd360

Snider AP, Wood JR (2019) Obesity induces ovarian inflammation and reduces oocyte quality. Reproduction 158(3):R79–R90. https://doi.org/10.1530/REP-18-0583

Sohrabi M, Roushandeh AM, Alizadeh Z, Vahidinia A, Vahabian M, Hosseini M (2015) Effect of a high fat diet on ovary morphology, in vitro development, in vitro fertilisation rate and oocyte quality in mice. Singap Med J 56(10):573–579. https://doi.org/10.11622/smedj.2015085

Sultan S, Patel AG, El-Hassani S, Whitelaw B, Leca BM, Vincent RP, le Roux CW, Rubino F, Aywlin SJB, Dimitriadis GK (2020) Male obesity associated gonadal dysfunction and the role of bariatric surgery. Front Endocrinol (Lausanne) 11:408. https://doi.org/10.3389/fendo.2020.00408

Turek-Plewa J, Jagodzinski PP (2005) The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett 10(4):631–647

Tzika E, Dreker T, Imhof A (2018) Epigenetics and metabolism in health and disease. Front Genet 9:361. https://doi.org/10.3389/fgene.2018.00361

Uysal F, Ozturk S (2017) DNA methyltransferases in mammalian oocytes. Results Probl Cell Differ 63:211–222. https://doi.org/10.1007/978-3-319-60855-6_10

Uysal F, Akkoyunlu G, Ozturk S (2015) Dynamic expression of DNA methyltransferases (DNMTs) in oocytes and early embryos. Biochimie 116:103–113. https://doi.org/10.1016/j.biochi.2015.06.019

Uysal F, Akkoyunlu G, Ozturk S (2016) DNA methyltransferases exhibit dynamic expression during spermatogenesis. Reprod Biomed Online 33(6):690–702. https://doi.org/10.1016/j.rbmo.2016.08.022

Uysal F, Ozturk S, Akkoyunlu G (2017) DNMT1, DNMT3A and DNMT3B proteins are differently expressed in mouse oocytes and early embryos. J Mol Histol 48(5–6):417–426. https://doi.org/10.1007/s10735-017-9739-y

Uysal F, Akkoyunlu G, Ozturk S (2019) Decreased expression of DNA methyltransferases in the testes of patients with non-obstructive azoospermia leads to changes in global DNA methylation levels. Reprod Fertil Dev. https://doi.org/10.1071/RD18246

Uysal F, Sukur G, Cinar O (2022) DNMT enzymes differentially alter global DNA methylation in a stage-dependent manner during spermatogenesis. Andrologia. https://doi.org/10.1111/and.14357

van Dijk SJ, Tellam RL, Morrison JL, Muhlhausler BS, Molloy PL (2015) Recent developments on the role of epigenetics in obesity and metabolic disease. Clin Epigenetics 7:66. https://doi.org/10.1186/s13148-015-0101-5

Wang N, Luo LL, Xu JJ, Xu MY, Zhang XM, Zhou XL, Liu WJ, Fu YC (2014) Obesity accelerates ovarian follicle development and follicle loss in rats. Metabolism 63(1):94–103. https://doi.org/10.1016/j.metabol.2013.09.001

Wang S, Pan MH, Hung WL, Tung YC, Ho CT (2019) From white to beige adipocytes: therapeutic potential of dietary molecules against obesity and their molecular mechanisms. Food Funct 10(3):1263–1279. https://doi.org/10.1039/c8fo02154f

Yoder JA, Soman NS, Verdine GL, Bestor TH (1997) DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe. J Mol Biol 270(3):385–395. https://doi.org/10.1006/jmbi.1997.1125

You D, Nilsson E, Tenen DE, Lyubetskaya A, Lo JC, Jiang R, Deng J, Dawes BA, Vaag A, Ling C, Rosen ED, Kang S (2017) Dnmt3a is an epigenetic mediator of adipose insulin resistance. eLife. https://doi.org/10.7554/eLife.30766