High faradic efficiency of CO2 conversion to formic acid catalyzed by Cu2O hollow-dices
Tóm tắt
Từ khóa
Tài liệu tham khảo
Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rodenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329(5993):834–838
Gillett NP, Arora VK, Zickfeld K, Marshall SJ, Merryfield AJ (2011) Ongoing climate change following a complete cessation of carbon dioxide emissions. Nat Geosci. 4(2):83–87
Qiao JL, Liu YY, Hong F, Zhang JJ (2014) A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev. 43(2):631–675
Xie H, Wang T, Liang J, Li Q, Sun S (2018) Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 21:41–54
Wang S, Kou T, Baker SE, Duoss EB, Li Y (2020) Recent progress in electrochemical reduction of CO2 by oxide-derived copper catalysts. Materials Today Nano 12:100096
Lu Q, Jiao F (2016) Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy 29:439–456
Costentin C, Robert M, Saveant JM (2013) Catalysis of the electrochemical reduction of carbon dioxide. Chem Soc Rev 42(6):2423–2436
Hazarika J, Manna MS (2019) Electrochemical reduction of CO2 to methanol with synthesized Cu2O nanocatalyst: Study of the selectivity. Electrochim Acta 328:135053
Gao YG, Wu Q, Liang XZ, Wang ZY, Zheng ZK, Wang P, Liu YY, Dai Y, Whangbo MH, Huang BB (2020) Cu2O Nanoparticles with Both {100} and {111} Facets for Enhancing the Selectivity and Activity of CO2 Electroreduction to Ethylene. Adv Sci 7(6):1902820
Fu WL, Liu Z, Wang TY, Liang JS, Duan S, Xie LF, Han JT, Li Q (2020) Promoting C2+ Production from Electrochemical CO2 Reduction on Shape-Controlled Cuprous Oxide Nanocrystals with High-Index Facets. ACS Sustain Chem Eng 8(40):15223–15229
Lu X, Leung DYC, Wang H, Leung MKH, Xuan J (2014) Electrochemical reduction of carbon dioxide to formic acid. Chem Electro Chem. 1(5):836–849
Mardini N, Bicer Y (2021) Direct synthesis of formic acid as hydrogen carrier from CO2 for cleaner power generation through direct formic acid fuel cell. Int J Hydrog Energy 46(24):13050–13060
Reda T, Plugge CM, Abram NJ, Hirst J (2008) Reversible interconversion of carbon dioxideand formate by an electroactive enzyme. Proc Natl Acad Sci U S A 105(31):10654–10658
Velasco-Vélez JJ, Chuang CH, Gao DF, Zhu QJ, Ivanov D, Jeon HS, Arrigo R, Mom RV, Stotz E, Wu HL, Jones TE, Cuenya BR, Axel KG, Schlögl R (2020) On the Activity/Selectivity and Phase Stability of Thermally Grown Copper Oxides during the Electrocatalytic Reduction of CO2. ACS Catal 10(19):11510–11518
Dou T, Qin Y, Zhang FZ, Lei XD (2021) CuS Nanosheet Arrays for Electrochemical CO2 Reduction with Surface Reconstruction and the Effect on Selective Formation of Formate. ACS Appl Energy Mater 4(5):4376–4384
Zhou QC, Zhang W, Qiu MQ, Yu Y (2021) Role of oxygen in copper-based catalysts for carbon dioxide electrochemical reduction. Mater Today Phys 20:2542–5293
Iijima G, Yamaguchi H, Inomata T, Yoto H, Ito M, Masuda H (2020) Methanethiol SAMs Induce Reconstruction and Formation of Cu+ on a Cu Catalyst under Electrochemical CO2 Reduction. ACS Catal 10(24):15238–15249
Zhang D-F, Zhang H, Guo L, Zheng K, Han X-D, Zhang Z (2009) Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J Mater Chem 19:29
Ghijsen J, Tjeng LH, van Elp J, Eskes H, Westerink J, Sawatzky GA, Czyzyk MT (1988) Electronic structure of Cu2O and CuO. Phys Rev B Condens Matter 38(16):11322–11330
Biesinger MC (2017) Advanced analysis of copper X-ray photoelectron spectra. Surf Interface Anal. 49(13):1325–1334
Kaushik VK (1989) Identification of oxidation states of copper in mixed oxides and chlorides using ESCA. Spectrochim Acta B 44(6):581–587
Garuthara R, Siripala W (2006) Photoluminescence characterization of polycrystalline n-type Cu2O films. J Lumin 121(1):173–178
Wu L, Yang J, Chi M, Wang S, Wei P, Zhang W, Chen L, Yang J (2015) Enhanced thermoelectric performance in Cu-intercalated BiTeI by compensation weakening induced mobility improvement. Sci Rep 5:14319
Singh M, Jampaiah D, Kandjani AE, Sabri YM, Della Gaspera E, Reineck P, Judd M, Langley J, Cox N, van Embden J, Mayes ELH, Gibson BC, Bhargava SK, Ramanathan R, Bansal V (2018) Oxygen-deficient photostable Cu2O for enhanced visible light photocatalytic activity. Nanoscale 10(13):6039–6050
Sui Y, Fu W, Zeng Y, Yang H, Zhang Y, Chen H, Li Y, Li M, Zou G (2010) Synthesis of Cu2O nanoframes and nanocages by selective oxidative etching at room temperature. Angew Chem Int Ed Engl 49(25):4282–4285