High-efficient flexible pressure sensor based on nanofibers and carbon nanotubes for artificial electronic skin and human motion monitoring

Springer Science and Business Media LLC - Tập 30 - Trang 1797-1806 - 2023
Tao Zhang1, Wentao Zhang1, Yang Li1, Xiulei Hu1, Haoxiang Yuan1, Tianyan Jiang1
1School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, China

Tóm tắt

Flexible pressure sensor plays a crucial role in wearable devices since it converts the physical signals of human motions into electrical signals. Among various pressure sensors, foam-based pressure sensors received great attention due to their excellent flexibility, low weight, and pressure resistance. However, the sensitivity of the foam-based pressure sensor is still not large enough, and the sensing range is also urged to be further improved. Herein, we proposed a high-performance foam-based pressure sensor composed of polydimethylsiloxane (PDMS), multi-walled carbon nanotubes (MWCNT), and nanofibers (FIBER). The PDMS/FIBER@MWCNT foam-based pressure sensor possessed outstanding sensitivity up to 4.07 kPa− 1 and a wide sensing range of 0–70 kPa. The pressure sensor also presented excellent linearity during 0–20 kPa and 20–70 kPa, respectively. And 2000 cyclic compression tests shown good cyclic stability. Meanwhile, the pressure sensor worked efficiently in monitoring subtle and large human motions, such as finger bending, wrist bending, throat vocal signals, and various pressures. In addition, the pressure sensor owned significant discrimination and high efficiency against different pressure, which is beneficial in human complex motion monitoring and signal analysis of wearable devices. Consequently, the PDMS/FIBER@MWCNT foam-based pressure sensor may possess promising prospects and potential in the applications of artificial electrical skin and wearable devices.

Tài liệu tham khảo

Z. Wang, Z. Zhou, S. Wang, X. Yao, X. Han, W. Cao et al., An anti-freezing and strong wood-derived hydrogel for high-performance electronic skin and wearable sensing. Compos. B Eng. 239, 109954 (2022). https://doi.org/10.1016/j.compositesb.2022.109954 D. Nahavandi, R. Alizadehsani, A. Khosravi, U.R. Acharya, Application of artificial intelligence in wearable devices: Opportunities and challenges. Comput. Meth Programs Biomed. 213, 106541 (2022). https://doi.org/10.1016/j.cmpb.2021.106541 G. Wang, L.Q. Tao, Z. Peng, C. Zhu, H. Sun, S. Zou et al., Nomex paper-based double-sided laser-induced graphene for multifunctional human-machine interfaces. Carbon 193, 68–76 (2022). https://doi.org/10.1016/j.carbon.2022.03.026 W. Cao, Z. Wang, X. Liu, Z. Zhou, Y. Zhang, S. He et al., Bioinspired MXene-Based user-interactive electronic skin for Digital and Visual Dual-Channel sensing, Nano-Micro Lett. 14 (119) (2022). https://doi.org/10.1007/s40820-022-00838-0 R. Sun, L. Gao, F. Liu, H. Su, L. Wu, Z. Zou et al., Magnetically induced robust anisotropic structure of multi-walled carbon nanotubes/Ni for high-performance flexible strain sensor. Carbon 194, 185–196 (2022). https://doi.org/10.1016/j.carbon.2022.03.032 H. Zhao, G. Zhu, F. Li, Y. Liu, M. Guo, L. Zhou, R. Liu, Sridhar Komarneni, 3D interconnected honeycomb-like ginkgo nut-derived porous carbon decorated with β-cyclodextrin for ultrasensitive detection of methyl parathion. Sens. Actuators B 380, 133309 (2023). https://doi.org/10.1016/j.snb.2023.133309 H. Zhao, M. Guo, F. Li, Yu Zhou, G. Zhu, Y. Liu, Q. Ran, F. Nie, V. Dubovyk, Fabrication of gallic acid electrochemical sensor based on interconnected Super-P carbon black@mesoporous silica nanocomposite modified glassy carbon electrode. J. Mater. Res. Technol. 24, 2100–2112 (2023). https://doi.org/10.1016/j.jmrt.2023.03.129 Q. Yunhang Liu, G. Wang, Q. Zhu, F. Ran, M. Li, G. Guo, H. Wang, Zhao, Novel electrochemical sensing platform based on palygorskite nanorods/Super P Li carbon nanoparticles-graphitized carbon nanotubes nanocomposite for sensitive detection of niclosamide. Ceram. Int (2023). https://doi.org/10.1016/j.ceramint.2023.03.253 L. Jingjing Liu, J. Zhang, F.B. Zhu, J. Yu, Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres. Sens. Actuators B 331, 129425 (2021). https://doi.org/10.1016/j.snb.2020.129425 Z. Duan, H. Jiang, Yadong, Tai, Recent advances in humidity sensors for human body related humidity detection. J. Mater. Chem. C 9, 14963–14980 (2021). https://doi.org/10.1039/D1TC04180K E.S. Hosseini, L. Manjakkal, D. Shakthivel, R. Dahiya, Glycine – Chitosan-Based flexible biodegradable Piezoelectric pressure Sensor. ACS Appl. Mater. Interfaces 12, 9008–9016 (2020). https://doi.org/10.1021/acsami.9b21052 K. Song, R. Zhao, Z.L. Wang, Y. Yang, Conjuncted pyro-piezoelectric effect for self-powered simultaneous temperature and pressure sensing. Adv. Mater. 31, 1902831 (2019). https://doi.org/10.1002/adma.201902831 S.R.A. Ruth, L. Beker, H. Tran, V.R. Feig, N. Matsuhisa, Z. Bao, Rational design of capacitive pressure sensors based on pyramidal Microstructures for Specialized Monitoring of Biosignals. Adv. Funct. Mater. 30, 1903100 (2020). https://doi.org/10.1002/adfm.201903100 J. Yang, S. Luo, X. Zhou, J. Li, J. Fu, W. Yang et al., Flexible, tunable, and Ultrasensitive Capacitive pressure sensor with Microconformal Graphene Electrodes. ACS Appl. Mater. Interfaces 11, 14997–15006 (2019). https://doi.org/10.1021/acsami.9b02049 M. Cao, J. Su, S. Fan, H. Qiu, D. Su, L. Li, Wearable piezoresistive pressure sensors based on 3D graphene. Chem. Eng. J. 406, 126777 (2021). https://doi.org/10.1016/j.cej.2020.126777 J.S. Kim, Y. So, S. Lee, C. Pang, W. Park, S. Chun, Uniform pressure responses for nanomaterials-based biological on-skin flexible pressure sensor array. Carbon 181, 169–176 (2021). https://doi.org/10.1016/j.carbon.2021.04.096 M. Lu, H. Mei, S. Zhou, T. Zhao, L. Cheng, L. Zhang, Activation of percolation network in structural-strengthened polymer-derived ceramic for minor deformation detection. Carbon 183, 368–379 (2021). https://doi.org/10.1016/j.carbon.2021.07.023 Z. Wang, S. Guo, H. Li, B. Wang, Y. Sun, Z. Xu et al., The Semiconductor/Conductor Interface Piezoresistive Effect in an Organic transistor for highly sensitive pressure sensors. Adv. Mater. 31, 1805630 (2019). https://doi.org/10.1002/adma.201805630 W.A.D.M. Jayathilaka, K. Qi, Y. Qin, A. Chinnappan, W.S. García, C. Baskar et al., Significance of Nanomaterials in Wearables: a review on Wearable Actuators and Sensors. Adv. Mater. 31, 1805921 (2019). https://doi.org/10.1002/adma.201805921 H. Guo, Y.J. Tan, G. Chen, Z. Wang, G.J. Susanto, H.H. See et al., Artificially innervated self-healing foams as synthetic piezo-impedance sensor skins. Nat. Commun. 11, 5747 (2020). https://doi.org/10.1038/s41467-020-19531-0 C.S. Boland, U. Khan, C. Backes, A. O’Neill, J. McCauley, S. Duane et al., Sensitive, High-Strain, high-rate Bodily Motion Sensors based on Graphene–Rubber Composites. ACS Nano 8(9), 8819–8830 (2014). https://doi.org/10.1021/nn503454h C. Armbruster, M. Schneider, S. Schumann, K. Gamerdinger, M. Cuevas, S. Rausch et al., Characteristics of highly flexible PDMS membranes for long-term mechanostimulation of biological tissue. J. Biomed. Mater. Res. 91, 700–705 (2009). https://doi.org/10.1002/jbm.b.31446 M.P. Wolf, G.B. Salieb-Beugelaar, P. Hunziker, PDMS with designer functionalities—Properties, modifications strategies, and applications. Prog Polym. Sci. 83, 97–734 (2018). https://doi.org/10.1016/j.progpolymsci.2018.06.001 J. Wang, C. Zhang, D. Chen, M. Sun, N. Liang, Q. Cheng et al., Fabrication of a sensitive strain and pressure sensor from Gold nanoparticle-assembled 3D-Interconnected Graphene Microchannel-Embedded PDMS, ACS appl. Mater. Interfaces 12(46), 51854–51863 (2020). https://doi.org/10.1021/acsami.0c16152 X. Shi, H. Wang, X. Xie, Q. Xue, J. Zhang, S. Kang et al., Bioinspired Ultrasensitive and Stretchable MXene-Based strain Sensor via Nacre-Mimetic Microscale “Brick-and-Mortar” Architecture. ACS Nano 13(1), 649–659 (2019). https://doi.org/10.1021/acsnano.8b07805 E. Roh, B.U. Hwang, D. Kim, B.Y. Kim, N.E. Lee, Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine Interfaces comprising a nanohybrid of Carbon Nanotubes and Conductive Elastomers. ACS Nano 9(6), 6252–6261 (2015). https://doi.org/10.1021/acsnano.5b01613 Q.J. Sun, X.H. Zhao, Y. Zhou, C.C. Yeung, W. Wu, S. Venkatesh et al., Fingertip-skin-inspired highly sensitive and multifunctional sensor with hierarchically structured conductive Graphite/Polydimethylsiloxane foams. Adv. Funct. Mater. 29, 1808829 (2019). https://doi.org/10.1002/adfm.201808829 Y. Ding, T. Xu, O. Onyilagha, H. Fong, Z. Zhu, Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges. ACS Appl. Mater. Interfaces 11(7), 6685–6704 (2019). https://doi.org/10.1021/acsami.8b20929 Y. Han, Y. Han, X. Zhang, L. Li, C. Zhang, J. Liu et al., Fish gelatin based Triboelectric Nanogenerator for Harvesting Biomechanical Energy and Self-Powered sensing of human physiological signals. ACS Appl. Mater. Interfaces 12(14), 16442–16450 (2020). https://doi.org/10.1021/acsami.0c01061 Y. Pang, H. Tian, L. Tao, Y. Li, X. Wang, N. Deng et al., Flexible, highly sensitive, and wearable pressure and strain sensors with Graphene Porous Network structure. ACS Appl. Mater. Interfaces 8(40), 26458–26462 (2016). https://doi.org/10.1021/acsami.6b08172 D. Cho, J. Park, J. Kim, T. Kim, J. Kim, I. Park et al., Three-dimensional continuous conductive nanostructure for highly sensitive and stretchable strain Sensor. ACS Appl. Mater. Interfaces 9(20), 17369–17378 (2017). https://doi.org/10.1021/acsami.7b03052 T. Yu, D. Zhang, Y. Wu, S. Guo, F. Lei, Y. Li et al., Graphene foam pressure sensor based on fractal electrode with high sensitivity and wide linear range. Carbon 182, 497–505 (2021). https://doi.org/10.1016/j.carbon.2021.06.049 Q. Chen, Q. Gao, X. Wang, D.W. Schubert, X. Liu, Flexible, conductive, and anisotropic thermoplastic polyurethane/polydopamine /MXene foam for piezoresistive sensors and motion monitoring, COMPOS PART A-APPL S 155 (2022) 106838. https://doi.org/10.1016/j.compositesa.2022.106838 X. Jiang, Z. Ren, Y. Fu, Y. Liu, R. Zou, G. Ji et al., Highly compressible and sensitive pressure sensor under large strain based on 3D porous reduced graphene oxide Fiber fabrics in wide Compression strains. ACS Appl. Mater. Interfaces 11(40), 37051–37059 (2019). https://doi.org/10.1021/acsami.9b11596 G. Tian, L. Zhan, J. Deng, H. Liu, J. Li, J. Ma et al., Coating of multi-wall carbon nanotubes (MWCNT) on three-dimensional, bicomponent nonwovens as wearable and high-performance piezoresistive sensors. Chem. Eng. J. 425, 130682 (2021). https://doi.org/10.1016/j.cej.2021.130682 L. Li, C. Zhu, Y. Wu, J. Wang, T. Zhang, Y. Liu, A conductive ternary network of a highly stretchable AgNWs/AgNPs conductor based on a polydopamine-modified polyurethane sponge. RSC Adv. 5(77), 62905–62912 (2015). https://doi.org/10.1039/C5RA10961B B. Chen, L. Zhang, H. Li, X. Lai, X. Zeng, Skin-inspired flexible and high-performance MXene@polydimethylsiloxane piezoresistive pressure sensor for human motion detection. J. Colloid Interface Sci. 617, 478–488 (2022). https://doi.org/10.1016/j.jcis.2022.03.013 Y. Long, S.Y. Xia, Z. Huang, C.H. Li, G. He, X. Ma et al., Pomegranate-inspired biomimetic pressure sensor arrays with a wide range and high Linear Sensitivity for Human–Machine Interaction. IEEE Trans. Electron. Devices 69(3), 1353–1358 (2022). https://doi.org/10.1109/TED.2022.3146108 P. Li, H. Zheng, X. Zhao, R. Ding, F. Xue, J. Xiong et al., Wide range pressure sensor construction based on tension-compression conversion and gradient stiffness design strategy. Compos. Part. A Appl. Sci. Manuf. 161, 107082 (2022). https://doi.org/10.1016/j.compositesa.2022.107082 Y.M. Yin, H.Y. Li, J. Xu, C. Zhang, F. Liang, X. Li et al., Facile fabrication of flexible pressure sensor with programmable lattice structure. ACS Appl. Mater. Interfaces 13, 10388–10396 (2021). https://doi.org/10.1021/acsami.0c21407 Z. Duan, Y. Jiang, Q. Huang, S. Wang, Y. Wang, H. Pan et al., Paper and carbon ink enabled low-cost, eco-friendly, flexible, multifunctional pressure and humidity sensors. Smart Mater. Struct. 30(5), 055012 (2021). https://doi.org/10.1088/1361-665X/abe87d Z. Zhang, X. Gui, Q. Hu, L. Yang, R. Yang, B. Huang et al., Highly sensitive capacitive pressure Sensor based on a Micropyramid array for Health and Motion Monitoring. Adv. Electron. Mater. 7, 2100174 (2021). https://doi.org/10.1002/aelm.202100174 S.W. Dai, Y.L. Gu, L. Zhao, W. Zhang, C.H. Gao, Y.X. Wu et al., Bamboo-inspired mechanically flexible and electrically conductive polydimethylsiloxane foam materials with designed hierarchical pore structures for ultra-sensitive and reliable piezoresistive pressure sensor. Compos. B Eng. 225, 109243 (2021). https://doi.org/10.1016/j.compositesb.2021.109243 H. Guan, J. Meng, Z. Cheng, X. Wang, Processing Natural Wood into a high-performance flexible pressure Sensor. ACS Appl. Mater. Interfaces 12(41), 46357–46365 (2020). https://doi.org/10.1021/acsami.0c12561 M. Cao, S. Fan, H. Qiu, D. Su, L. Li, J. Su, CB nanoparticles optimized 3D wearable Graphene Multifunctional Piezoresistive Sensor framed by Loofah Sponge. ACS Appl. Mater. Interfaces 12, 36540–36547 (2020). https://doi.org/10.1021/acsami.0c09813