High efficient detoxification of mustard gas surrogate based on nanofibrous fabric
Tài liệu tham khảo
Marrs, 2007
Monteiro-Riviere, 1999, Immunohistochemical characterization of the basement membrane epitopes in bis (2-chloroethyl) sulfide-induced toxicity in mouse ear skin, J. Appl. Toxicol., 19, 313, 10.1002/(SICI)1099-1263(199909/10)19:5<313::AID-JAT582>3.0.CO;2-X
Yang, 1992, Decontamination of chemical warfare agents, Chem. Rev., 92, 1729, 10.1021/cr00016a003
Roy, 2012, Degradation of sulfur mustard and 2-chloroethyl ethyl sulfide on Cu–BTC metal organic framework, Microporous Mesoporous Mater., 162, 207, 10.1016/j.micromeso.2012.06.011
Fox, 1990, Photocatalytic decontamination of sulfur-containing alkyl halides on irradiated semiconductor suspensions, Catal. Lett., 5, 369, 10.1007/BF00765179
Vorontsov, 2003, Pathways of photocatalytic gas phase destruction of HD simulant 2-chloroethyl ethyl sulfide, J. Catal., 220, 414, 10.1016/S0021-9517(03)00293-8
Bandosz, 2006
Hoffmann, 1995, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95, 69, 10.1021/cr00033a004
Martyanov, 2003, Photocatalytic oxidation of gaseous 2-chloroethyl ethyl sulfide over TiO2, Environ. Sci. Technol., 37, 3448, 10.1021/es0209767
Panayotov, 2003, Bifunctional hydrogen bonding of 2-chloroethyl ethyl sulfide on TiO2− SiO2 powders, J. Phys. Chem. B, 107, 10560, 10.1021/jp0304273
Asahi, 2001, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293, 269, 10.1126/science.1061051
Singh, 2011, Significance of porous structure on degradatin of 2 2′ dichloro diethyl sulphide and 2 chloroethyl ethyl sulphide on the surface of vanadium oxide nanostructure, J. Hazard. Mater., 190, 1053, 10.1016/j.jhazmat.2011.02.003
Houšková, 2007, Zinc oxide prepared by homogeneous hydrolysis with thioacetamide, its destruction of warfare agents, and photocatalytic activity, J. Phys. Chem. A, 111, 4215, 10.1021/jp070878d
Florent, 2017, Mixed CuFe and ZnFe (hydr) oxides as reactive adsorbents of chemical warfare agent surrogates, J. Hazard. Mater., 329, 141, 10.1016/j.jhazmat.2017.01.036
Arcibar-Orozco, 2015, Reactive adsorption of CEES on iron oxyhydroxide/(N-) graphite oxide composites under visible light exposure, J. Mater. Chem. A, 3, 17080, 10.1039/C5TA04223B
Arcibar-Orozco, 2015, Visible light enhanced removal of a sulfur mustard gas surrogate from a vapor phase on novel hydrous ferric oxide/graphite oxide composites, J. Mater. Chem. A, 3, 220, 10.1039/C4TA04159C
Okun, 2003, Polyoxometalates on cationic silica: highly selective and efficient O2/air-based oxidation of 2-chloroethyl ethyl sulfide at ambient temperature, J. Mol. Catal. A: Chem., 197, 283, 10.1016/S1381-1169(02)00651-9
Narske, 2002, Solvent effects on the heterogeneous adsorption and reactions of (2-chloroethyl) ethyl sulfide on nanocrystalline magnesium oxide, Langmuir, 18, 4819, 10.1021/la020195j
Wagner, 1999, Reactions of VX, GD, and HD with nanosize MgO, J. Phys. Chem. B, 103, 3225, 10.1021/jp984689u
Dadvar, 2012, The removal of 2-chloroethyl ethyl sulfide using activated carbon nanofibers embedded with MgO and Al2O3 nanoparticles, J. Chem. Eng. Data, 57, 1456, 10.1021/je201328s
Wagner, 2001, Reactions of VX, GB, GD, and HD with nanosize Al2O3. Formation of aluminophosphonates, J. Am. Chem. Soc., 123, 1636, 10.1021/ja003518b
Mawhinney, 1999, Adsorption and reaction of 2-chloroethylethyl sulfide with Al2O3 surfaces, Langmuir, 15, 4789, 10.1021/la981440v
Wagner, 2000, Reactions of VX, GD, and HD with nanosize CaO: autocatalytic dehydrohalogenation of HD, J. Phys. Chem. B, 104, 5118, 10.1021/jp000101j
Sun, 2008, Photocatalytic degradation of Orange G on nitrogen-doped TiO 2 catalysts under visible light and sunlight irradiation, J. Hazard. Mater., 155, 312, 10.1016/j.jhazmat.2007.11.062
Ramaseshan, 2007, Zinc titanate nanofibers for the detoxification of chemical warfare simulants, J. Am. Ceram. Soc., 90, 1836, 10.1111/j.1551-2916.2007.01633.x
Si, 2014, Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality, Nat. Commun., 5, 10.1038/ncomms6802
Xu, 2012, Preparation of hierarchically nanofibrous membrane and its high adaptability in hexavalent chromium removal from water, Chem. Eng. J., 198, 310, 10.1016/j.cej.2012.05.104
Jia, 2014, “Flower-like” PA6@ Mg (OH) 2 electrospun nanofibers with Cr (VI)-removal capacity, Chem. Eng. J., 254, 98, 10.1016/j.cej.2014.05.005
Wang, 2015, Preparation of petaloid TPEE@ AlOOH nanofibers with Cr (VI)-removal capacity, Nano, 10, 1550029, 10.1142/S1793292015500290
Li, 2014, Preparation of polyamides 6 (PA6)/Chitosan@ Fe x O y composite nanofibers by electrospinning and pyrolysis and their Cr (VI)-removal performance, Catal. Today, 224, 94, 10.1016/j.cattod.2013.11.034
Villar-Rodil, 2002, Combining thermal analysis with other techniques to monitor the decomposition of poly (m-phenylene isophthalamide), J. Therm. Anal. Calorim., 70, 37, 10.1023/A:1020685029220
Salter, 2009, N-Chloramide modified Nomex® as a regenerable self-decontaminating material for protection against chemical warfare agents, J. Mater. Sci., 44, 2069, 10.1007/s10853-008-3114-z
Kim, 2009, Antimicrobial polyethylene terephthalate (PET) treated with an aromatic N-halamine precursor, m-aramid, J. Appl. Polym. Sci., 114, 3835, 10.1002/app.31016
Kakida, 1976, Crystal structure of poly (m-phenylene isophthalamide), J. Polym. Sci.: Polym. Phys. Ed., 14, 427
Kalhori, 2017, Enhancement of the adsorption capacity of the light-weight expanded clay aggregate surface for the metronidazole antibiotic by coating with MgO nanoparticles: studies on the kinetic, isotherm, and effects of environmental parameters, Chemosphere, 175, 8, 10.1016/j.chemosphere.2017.02.043