High efficiency microbial electrosynthesis of acetate from carbon dioxide using a novel graphene–nickel foam as cathode

Journal of Chemical Technology and Biotechnology - Tập 93 Số 2 - Trang 457-466 - 2018
Tian‐shun Song1,2,3, Kangqing Fei1,3, Hongkun Zhang1,3, Hao Yuan2, Yang Yang2, Pingkai Ouyang1,4,3, Jingjing Xie1,2,4,3
1College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China
2Jiangsu Branch of China Academy of Science & Technology Development Nanjing PR China
3State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, PR China
4Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, PR China

Tóm tắt

AbstractBACKGROUNDMicrobial electrosynthesis (MES) is a biocathode‐driven process, producing high‐value chemicals, from CO2. However, the low efficiency of the biocathode hinders the MES process efficiency significantly.RESULTSA novel 3D graphene–nickel foam (G‐NF) cathode has been fabricated, by hydrothermal approach for the improvement of microbially‐catalyzed reduction at the MES cathode. An increase of 1.8 times in the volumetric acetate production rate was obtained, compared with the untreated nickel foam. In MES with G‐NF, a volumetric acetate production rate of 3.11 mmol L‐1 day‐1 has been achieved; 70% of the electrons consumed were recovered and the final acetate concentration reached 5.46 g L‐1 within 28 days.CONCLUSIONThe hierarchical porous G‐NF cathode improved bacterial colonization and the efficiency of mass, nutrients and protons transfer due to its 3D composition; the graphene coating considerably increased the effective surface area for microbial adhesion, as well as the electron transfer rate of biofilm in the MES. This study attempted to improve the efficiency of the biocathode, and provides a promising large electrode for large‐scale MES devices. © 2017 Society of Chemical Industry

Từ khóa


Tài liệu tham khảo

10.1126/science.aad8593

10.1038/nrmicro2422

10.1016/j.copbio.2013.02.012

10.1016/j.biotechadv.2013.10.001

10.1016/j.biotechadv.2015.03.002

10.1128/mBio.00103-10

10.1128/AEM.02642-10

10.1039/C2EE23350A

Tremblay PL, 2015, Electrifying microbes for the production of chemicals, Frontier Microbiol, 6

10.1021/es303837j

10.1039/c3cp52697f

Giddings CGS, 2015, Simplifying microbial electrosynthesis reactor design, Frontier Microbiol, 6

10.1002/jctb.5015

10.1021/acs.estlett.5b00212

10.1021/acs.est.5b03821

10.1021/es400341b

10.1039/C4TA03101F

10.1002/jctb.4657

10.1016/j.coche.2012.07.005

10.1021/es506149d

10.1128/AEM.02401-12

10.1371/journal.pone.0109935

10.1016/j.copbio.2015.02.014

10.1016/j.biortech.2015.05.081

10.1016/j.jpowsour.2009.11.057

10.1016/j.bios.2016.01.008

10.1038/nmat3001

10.1039/c3nr03487a

10.1038/nmat1849

10.1126/science.1157996

10.1002/anie.201400463

10.1002/jctb.3764

10.1111/j.1462-2920.2008.01675.x

10.1016/j.biortech.2017.02.104

Deng WK, 2014, Hem I: a toolkit for illustrating heatmaps, Plos One, 9

10.1016/j.carbon.2007.02.034

10.1039/C6TA02036D

10.1016/j.jpowsour.2011.09.078

10.1016/j.ijhydene.2010.08.131

10.1039/C6RA04734C

10.1016/j.bios.2016.08.037

10.1016/j.ibiod.2016.08.007

10.1128/AEM.03203-12

10.1128/AEM.01345-09

10.1016/j.ijhydene.2011.08.076

10.1016/S0360-3199(01)00176-8

10.1039/C5EE03088A

10.1016/j.ijhydene.2012.12.107

10.4014/jmb.1304.04039

MohanakrishnaG VanbroekhovenKandPantD Imperative role of applied potential and inorganic carbon source on acetate production through microbial electrosynthesis. J CO2Utilization15:57–64(2016).