High-cycle fatigue investigations of notched Glare under different stress ratio's in various environments
Tóm tắt
Notched Glare 4A-3/2 laminates, comprising thin 2014-T6 aerospace aluminum alloy sheets alternately bonded with unidirectional E-glass fiber-based composite prepregs, are tested under tensile-tensile fatigue load with different stress ratio’s ranging from 0.1 to 0.5 in ambient, aqueous, and corrosive environments in high-cycle conditions. Fatigue characteristics of the laminates are found to be influenced by the operating environment and the magnitude of stress ratio. Notched plain 2014-T6 aerospace aluminum alloy specimens are also subjected to identical cyclic stress levels as in aluminum alloy layers of the laminates for comparative analysis of their fatigue behavior with those of the laminates. Retarded crack growth rates in the laminates leading to their enhanced fatigue lives and higher cyclic fracture toughness values vis-à-vis plain specimens substantiate fiber bridging effect in the laminates.
Tài liệu tham khảo
Alderliesten, RC. (2007a). Analytical prediction model for fatigue crack propagation and delamination growth in Glare. International Journal of Fatigue, 29(4), 628–646.
Alderliesten, RC. (2007b). On the available relevant approaches for fatigue crack propagation prediction in Glare. International Journal of Fatigue, 29(2), 289–304.
Alderliesten, RC, & Homan, JJ. (2006). Fatigue and damage tolerance issues of Glare in aircraft structures. International Journal of Fatigue, 28(10), 1116–1123.
Bhat, S, & Narayanan, S. (2014). Quantification of fibre bridging in mode I cracked Glare without delaminations. European Journal of Mechanics A/Solids, 43(1–2), 152–170.
Callister, WD, Jr. (2004). Materials science and engineering: an introduction (6th ed., pp. 737–754). India: Wiley.
Chang, PY, & Yang, JM. (2008). Modelling of fatigue crack growth in notched fiber metal laminates. International Journal of Fatigue, 30(12), 2165–2174.
da Costa, AA, da Silva, DFNR, Travessa, DN, & Botelho, EC. (2012). The effect of thermal cycles on the mechanical properties of fiber-metal laminates. Materials and Design, 42(12), 434–440.
Elber, W. (1976). Fatigue crack growth under spectrum loads, ASTM STP 595 (pp. 236–250). Philadelphia: American Society for Testing and Materials.
Guo, YJ, & Wu, XR. (1998). A theoretical model for predicting fatigue crack growth rates in fiber-reinforced metal laminates. Fatigue and Fracture of Engineering Materials and Structures, 21(9), 1133–1145.
Guo, YJ, & Wu, XR. (1999a). A phenomenological model for predicting crack growth in fiber reinforced metal laminates under constant amplitude loading. Composites Science and Technology, 59(12), 1825–1831.
Guo, YJ, & Wu, XR. (1999b). Bridging stress distribution in center-cracked fiber reinforced metal laminates: modeling and experiment. Engineering Fracture Mechanics, 63(2), 147–163.
Homan, JJ. (2006). Fatigue initiation in fiber metal laminates. International Journal of Fatigue, 28(4), 366–374.
Irwin, GR. (1967). NRL Report 6598. Washington D.C.: Naval Research Laboratory.
Kawai, M, & Hachinobe, A. (2002). Two stress level fatigue of unidirectional fiber-metal hybrid composite: GLARE 2. International Journal of Fatigue, 24(5), 567–580.
Kawai, M, & Kato, K. (2006). Effects of R-ratio on the off-axis fatigue behavior of unidirectional hybrid GFRP/Al laminates at room temperature. International Journal of Fatigue, 28(10), 1226–1238.
Khan, SU, Alderliesten, RC, Rans, CD, & Benedictus, R. (2010). Application of a modified Wheeler model to predict fatigue crack growth in fiber metal laminates under variable amplitude loading. Engineering Fracture Mechanics, 77(9), 1400–1416.
Kumar, P. (2009). Elements of fracture mechanics (p. 91). India: McGraw-Hill.
Lin, CT, & Kao, PW. (1995). Effect of fiber bridging on the fatigue crack propagation in carbon fiber-reinforced aluminum laminates. Material Science and Engineering A, 190(1–2), 65–73.
Lin, CT, & Kao, PW. (1996). Delamination growth and its effect on crack propagation in carbon fiber reinforced aluminum laminates under fatigue loading. Acta Materialia, 44(3), 1181–1188.
Lin, CT, Kao, PW, & Yang, FS. (1991). Fatigue behavior of carbon fiber-reinforced aluminum laminates. Composites, 22(2), 135–141.
Rans, CD, Alderliesten, RC, & Benedictus, R. (2011). Predicting the influence of temperature on fatigue crack propagation in fiber metal laminates. Engineering Fracture Mechanics, 78(10), 2193–2201.
Suiker, ASJ, & Fleck, NA. (2006). Modelling of fatigue crack tunneling and delamination in layered composites. Composites Part A: Applied Science and Manufacturing, 37(10), 1722–1733.
Shim, DJ, Alderliesten, RC, Spearing, SM, & Burianek, DA. (2003). Fatigue crack growth prediction in GLARE hybrid laminates. Composites Science and Technology, 63(12), 1759–1767.
Takamatsu, T, Matsumura, T, Ogura, N, Shimokawa, T, & Kakuta, Y. (1999). Fatigue crack growth properties of a GLARE3-5/4 fiber/metal laminate. Engineering Fracture Mechanics, 63(3), 253–272.