High cycle fatigue and fatigue crack propagation behaviors of β-annealed Ti-6Al-4V alloy

Daeho Jeong1, Youngeun Kwon2, Masahiro Goto3, Sangshik Kim1
1Department of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University, Jinju, 52828, South Korea
2Department of Materials Processing, Korea Institute of Materials Science, Changwon, 51508, South Korea
3Department of Mechanical Engineering, Oita University, Oita 870-1192, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Andrade, A., Morcelli, A., & Lobo, R. (2010). Deformation and fracture of an alpha/beta titanium alloy. Revista Matéria, 15(2), 364–370. doi: 10.1590/S1517-70762010000200038 .

ASTM Standard E466. (2002). Standard practice for conduction force controlled constant amplitude axial fatigue test of metallic materials. Annual Book of ASTM Standards, 03.01. Philadelphia: American Society for Testing and Materials.

ASTM Standard E647. (2002). Standard test method for measurement of fatigue crack growth rates. Annual Book of ASTM Standards, 03.01. Philadelphia: American Society for Testing and Materials.

Bania, P. J., Bidwell, L. R., Hall, J. A., Eylon, D., & Chakrabarti, A. K. (1982). Fracture - microstructure relationships in titanium alloys. In J. C. Williams & A. F. Belov (Eds.), Titanium and titanium alloys, scientific and technological aspects (Vol. 1, p. 663). New York: Plenum Press.

Borisova, E. A., Shashenkova, I. I., Krivko, A. I., & Barasheva, T. V. (1975). Vacuum annealing of titanium alloys. Met Sci Heat Treat, 17(4), 313–316. doi: 10.1007/BF00663392 .

Bowen, A. W., & Stubbington, C. A. (1973). The effect of α + β working on the fatigue and tensile properties of Ti-6Al-4V bars. In R. I. Jaffee & H. M. Burte (Eds.), Titanium science and technology (p. 2097). New York: Plenum Press.

Campbell, F. (2008). Elements of metallurgy and engineering alloys. Ohio: ASM International.

Campbell, F. C., Jr. (2011). Manufacturing technology for aerospace structural materials. Amsterdam: Elsevier.

Chandler, H. (1996). Heat treater's guide: practices and procedures for nonferrous alloys. Ohio: ASM International.

Davis, J. R. (1995). ASM specialty handbook: tool materials. Ohio: ASM International.

Demulsant, X., & Mendez, J. (1995). Microstructural effects on small fatigue crack initiation and growth in Ti6A14V alloys. Fatigue Fract Eng Mater Struct, 18, 1483–1497. doi: 10.1111/j.1460-2695.1995.tb00870.x .

Donachie, M. J. (2000). Titanium: a technical guide (2nd ed.). United States of America: ASM International, Ohio.

Eylon, D., & Pierce, C. M. (1976). Effect of microstructure on notch fatigue properties of Ti-6AI-4 V. Metall Mater Trans A, 7A, 111–121. doi: 10.1007/BF02644046 .

Ezugwu, E. O., & Wang, Z. M. (1997). Titanium alloys and their machinability-a review. J Mater Process Tech, 68, 262–274. doi: 10.1016/S0924-0136(96)00030-1 .

Froes, F. H. (2015). Titanium: physical metallurgy, processing and applications. Ohio: ASM International.

Gammon, L. M., Briggs, R. D., Packard, J. M., Batson, K. W., Boyer, R., & Domby, C. W. (1985). Metallography and microstructures Vol 9. Ohio: ASM International.

Halliday, M. D., & Beevers, C. J. (1981). Some aspects of fatigue crack closure in two contrasting titanium alloys. J Test Eval, 9, 195–201. doi: 10.1520/JTE11227J .

Hicks, M. A., Jeal, R. H., & Beevers, C. J. (1983). Slow fatigue crack growth and threshold behaviour in IMI 685. Fatigue Fract Eng Mater Struct, 6, 51–65. doi: 10.1111/j.1460-2695.1983.tb01138.x .

Hines, J. A., & Lütjering, G. (1999). Propagation of microcracks at stress amplitudes below the conventional fatigue limit in Ti-6Al-4 V. Fatigue Fract Eng Mater Struct, 22, 657–665. doi: 10.1046/j.1460-2695.1999.t01-1-00217.x .

Inagaki, I., Takechi, T., ShiraiI, Y., & Ariyasu, N. (2014). Application and features of titanium for the aerospace industry. Nippon Steel & Sumitomo Metal Technical Report, 106, 22–27.

Ivasishin, O. M., Semiatin, S. L., Markovsky, P. E., Shevchenko, S. V., & Ulshin, S. V. (2002). Grain growth and texture evolution in Ti-6Al-4 V during beta annealing under continuous heating conditions. Mater Sci Eng, A337, 88–96. doi: 10.1016/S0921-5093(01)01990-6 .

Jeong, D. H., Lee, S. G., Jang, W. K., Choi, J. K., Kim, Y. J., & Kim, S. S. (2013). Cryogenic S-N fatigue and fatigue crack propagation behaviors of high manganese austenitic steels. Metall Mater Trans A, 44A, 4601–4612. doi: 10.1007/s11661-013-1809-5 .

Jeong, D. H., Choi, M. J., Baik, S. I., Lee, H. C., & Kim, S. S. (2014). Effect of service exposure on fatigue crack propagation of Inconel 718 Turbine Disc Material at elevated temperatures. Mater Charact, 95, 232–244. doi: 10.1016/j.matchar.2014.06.022 .

Jeong, D. H., Lee, S. G., Seo, I. S., Yoo, J. Y., & Kim, S. S. (2015a). Fatigue crack propagation behavior of Fe24Mn steel weld at 298 and 110 K. Met Mater Int, 21(1), 22–30. doi: 10.1007/s12540-015-1004-x .

Jeong, D. H., Lee, S. G., Seo, I. S., Yoo, J. Y., & Kim, S. S. (2015b). Effect of applied potential on fatigue crack propagation behavior of Fe24Mn steel in seawater. Met Mater Int, 21(1), 14–21. doi: 10.1007/s12540-015-1003-y .

Jeong, D. H., Sung, H. K., Kwon, Y. N., & Kim, S. S. (2016a). Effect of superplastic forming exposure on tensile and S-N fatigue behavior of Ti64 alloy. Met Mater Int, 22(4), 594–600. doi: 10.1007/s12540-016-6041-6 .

Jeong, D. H., Sung H. K., Kwon, Y. N., & Kim, S. S. (2016). Effect of superplastic forming exposure on fatigue crack propagation behavior of Ti-6Al-4V alloy. Met Mater Int, accepted. doi: 10.1007/s12540-016-6075-9

Jung, D. H., Kwon, J. K., Woo, N. S., Kim, Y. J., Goto, M., & Kim, S. S. (2014). S-N fatigue and fatigue crack propagation behaviors of X80 steel at room and low temperatures. Metall Mater Trans A, 45A, 654–662. doi: 10.1007/s11661-013-2012-4 .

Kaminaka, H., Abe, M., Matsumoto, S., Kimura, K., & Kamio, H. (2014). Characteristics and applications of high corrosion resistant titanium alloys. Nippon Steel & Sumitomo Metal Technical Report, 106, 34–40.

Kim, Y. J., Kwon, J. K., Lee, H. J., Jang, W. K., Choi, J. K., & Kim, S. S. (2011). Effect of microstructure on fatigue crack propagation and S-N fatigue behaviors of TMCP steels with yield strengths of approximately 450 MPa. Metall Mater Trans A, 42A, 986–999. doi: 10.1007/s11661-010-0577-8 .

Kim, S. S., Kwon, J. K., Kim, Y. J., Jang, W. K., Lee, S. G., & Choi, J. K. (2013). Factors influencing fatigue crack propagation behavior of austenitic steels. Mel Mater Int, 19(4), 1–8. doi: 10.1007/s12540-013-4007-5 .

Lucas, J. J., & Konieczny, P. P. (1971). Relationship between alpha grain size and crack initiation fatigue strength in Ti-6AI-4 V. Metall Mater Trans A, 2A, 911–912. doi: 10.1007/BF02662756 .

Lütjering, G. (1998). Influence of processing on microstructure and mechanical properties of (α + β) titanium alloys. Mater Sci Eng, A243, 32–45. doi: 10.1016/S0921-5093(97)00778-8 .

Lütjering, G., & Williams, J. C. (2013). Titanium. Berlin: Springer Science & Business Media.

Morita, T., Hatsuoka, K., Iizuka, T., & Kawasaki, K. (2005). Strengthening of Ti–6Al–4 V alloy by short-time duplex heat treatment. Mater Trans, 46(7), 1681–1686. doi: 10.2320/matertrans.46.1681 .

Mrazova, M. (2013). Advanced composite materials of the future in aerospace industry. Incas Bulletin, 5(3), 139–150. doi: 10.13111/2066-8201.2013.5.3.14 .

Nicholas, T. (2006). High cycle fatigue: a mechanics of materials perspective. Amsterdam: Elsevier.

Rajan, T. V., Sharma, C. P., & Sharma, A. (2011). Heat treatment: principles and techniques. New Delhi: PHI Learning Pvt. Ltd.

Ruppen, J., Bhowal, P., Eylon, D., & McEvily, A. J. (1979). On the process of subsurface fatigue crack initiation in Ti-6Al-4V. In J. Fong (Ed.), Fatigue mechanisms, ASTM STP 675 (p. 47). Philadelphia: American Society for Testing and Materials.

Semiatin, S. L., Knisley, S. L., Fagin, P. N., Zhang, F., & Barker, D. R. (2003). Microstructure evolution during alpha-beta heat treatment of Ti-6Al-4 V. Metall Mater Trans A, 34A, 2377–2386. doi: 10.1007/s11661-003-0300-0 .

Starke, E. A., & Williams, J. C. (1989). Microstructure and the farcture mechanics of fatigue crack propagation. In R. P. Wei & R. P. Gangloff (Eds.), Fracture mechanics: perspectives and directions, ASTM STP1020 (p. 184). Philadelphia: American Society for Testing and Materials.

Sung, H. K., Jeong, D. H., Park, T. D., Lee, J. S. & Kim, S. S. (2016). S-N fatigue behavior of Fe25Mn steel and its weld at 298 and 110 K. Met Mater Int, accepted. doi: 10.1007/s12540-016-6108-4

Suresh, S. (1983). Crack deflection: implications for the growth of long and short fatigue cracks. Metall Mater Trans A, 14A, 2375–2385. doi: 10.1007/BF02663313 .

Suresh, S. (1985). Fatigue crack deflection and fracture surface contact: micromechanical models. Metall Mater Trans A, 16A, 249–260. doi: 10.1007/BF02815306 .

Suresh, S., & Ritchie, R. O. (1982). A geometric model for fatigue crack closure induced by fracture surface morphology. Metall Mater Trans A, 13A, 1627–1631. doi: 10.1007/BF02644803 .

Venkatesh, B. D., Chen, D. L., & Bhole, S. D. (2009). Effect of heat treatment on mechanical properties of Ti–6Al–4 V ELI alloy. Mater Sci Eng, A506, 117–124. doi: 10.1016/j.msea.2008.11.018 .

Wanhill, R., & Barter, S. (2011). Fatigue of beta processed and beta heat-treated titanium alloys. Berlin: Springer Science & Business Media.

Welsch, G., Boyer, R., & Collings, E. W. (1993). Materials properties handbook: titanium alloys. Ohio: ASM International.

Yoder, G. R., Cooley, L. A., & Crooker, T. W. (1976). A micromechanistic interpretation of cyclic crack-growth behavior in a beta-annealed Ti-6Al-4V alloy. Washington: US Naval Research Lab.

Ziaja, W., Sieniawski, J., Kubiak, K., & Motyka, M. (2001). Fatigue and microstructure of two phase titanium alloys. Inżynieria Materiałowa, 22(3), 981–985. doi: 10.1016/S0921-5093(97)00778-8 .