High cycle fatigue and fatigue crack propagation behaviors of β-annealed Ti-6Al-4V alloy
Tóm tắt
Từ khóa
Tài liệu tham khảo
Andrade, A., Morcelli, A., & Lobo, R. (2010). Deformation and fracture of an alpha/beta titanium alloy. Revista Matéria, 15(2), 364–370. doi: 10.1590/S1517-70762010000200038 .
ASTM Standard E466. (2002). Standard practice for conduction force controlled constant amplitude axial fatigue test of metallic materials. Annual Book of ASTM Standards, 03.01. Philadelphia: American Society for Testing and Materials.
ASTM Standard E647. (2002). Standard test method for measurement of fatigue crack growth rates. Annual Book of ASTM Standards, 03.01. Philadelphia: American Society for Testing and Materials.
Bania, P. J., Bidwell, L. R., Hall, J. A., Eylon, D., & Chakrabarti, A. K. (1982). Fracture - microstructure relationships in titanium alloys. In J. C. Williams & A. F. Belov (Eds.), Titanium and titanium alloys, scientific and technological aspects (Vol. 1, p. 663). New York: Plenum Press.
Borisova, E. A., Shashenkova, I. I., Krivko, A. I., & Barasheva, T. V. (1975). Vacuum annealing of titanium alloys. Met Sci Heat Treat, 17(4), 313–316. doi: 10.1007/BF00663392 .
Bowen, A. W., & Stubbington, C. A. (1973). The effect of α + β working on the fatigue and tensile properties of Ti-6Al-4V bars. In R. I. Jaffee & H. M. Burte (Eds.), Titanium science and technology (p. 2097). New York: Plenum Press.
Campbell, F. C., Jr. (2011). Manufacturing technology for aerospace structural materials. Amsterdam: Elsevier.
Chandler, H. (1996). Heat treater's guide: practices and procedures for nonferrous alloys. Ohio: ASM International.
Davis, J. R. (1995). ASM specialty handbook: tool materials. Ohio: ASM International.
Demulsant, X., & Mendez, J. (1995). Microstructural effects on small fatigue crack initiation and growth in Ti6A14V alloys. Fatigue Fract Eng Mater Struct, 18, 1483–1497. doi: 10.1111/j.1460-2695.1995.tb00870.x .
Donachie, M. J. (2000). Titanium: a technical guide (2nd ed.). United States of America: ASM International, Ohio.
Eylon, D., & Pierce, C. M. (1976). Effect of microstructure on notch fatigue properties of Ti-6AI-4 V. Metall Mater Trans A, 7A, 111–121. doi: 10.1007/BF02644046 .
Ezugwu, E. O., & Wang, Z. M. (1997). Titanium alloys and their machinability-a review. J Mater Process Tech, 68, 262–274. doi: 10.1016/S0924-0136(96)00030-1 .
Froes, F. H. (2015). Titanium: physical metallurgy, processing and applications. Ohio: ASM International.
Gammon, L. M., Briggs, R. D., Packard, J. M., Batson, K. W., Boyer, R., & Domby, C. W. (1985). Metallography and microstructures Vol 9. Ohio: ASM International.
Halliday, M. D., & Beevers, C. J. (1981). Some aspects of fatigue crack closure in two contrasting titanium alloys. J Test Eval, 9, 195–201. doi: 10.1520/JTE11227J .
Hicks, M. A., Jeal, R. H., & Beevers, C. J. (1983). Slow fatigue crack growth and threshold behaviour in IMI 685. Fatigue Fract Eng Mater Struct, 6, 51–65. doi: 10.1111/j.1460-2695.1983.tb01138.x .
Hines, J. A., & Lütjering, G. (1999). Propagation of microcracks at stress amplitudes below the conventional fatigue limit in Ti-6Al-4 V. Fatigue Fract Eng Mater Struct, 22, 657–665. doi: 10.1046/j.1460-2695.1999.t01-1-00217.x .
Inagaki, I., Takechi, T., ShiraiI, Y., & Ariyasu, N. (2014). Application and features of titanium for the aerospace industry. Nippon Steel & Sumitomo Metal Technical Report, 106, 22–27.
Ivasishin, O. M., Semiatin, S. L., Markovsky, P. E., Shevchenko, S. V., & Ulshin, S. V. (2002). Grain growth and texture evolution in Ti-6Al-4 V during beta annealing under continuous heating conditions. Mater Sci Eng, A337, 88–96. doi: 10.1016/S0921-5093(01)01990-6 .
Jeong, D. H., Lee, S. G., Jang, W. K., Choi, J. K., Kim, Y. J., & Kim, S. S. (2013). Cryogenic S-N fatigue and fatigue crack propagation behaviors of high manganese austenitic steels. Metall Mater Trans A, 44A, 4601–4612. doi: 10.1007/s11661-013-1809-5 .
Jeong, D. H., Choi, M. J., Baik, S. I., Lee, H. C., & Kim, S. S. (2014). Effect of service exposure on fatigue crack propagation of Inconel 718 Turbine Disc Material at elevated temperatures. Mater Charact, 95, 232–244. doi: 10.1016/j.matchar.2014.06.022 .
Jeong, D. H., Lee, S. G., Seo, I. S., Yoo, J. Y., & Kim, S. S. (2015a). Fatigue crack propagation behavior of Fe24Mn steel weld at 298 and 110 K. Met Mater Int, 21(1), 22–30. doi: 10.1007/s12540-015-1004-x .
Jeong, D. H., Lee, S. G., Seo, I. S., Yoo, J. Y., & Kim, S. S. (2015b). Effect of applied potential on fatigue crack propagation behavior of Fe24Mn steel in seawater. Met Mater Int, 21(1), 14–21. doi: 10.1007/s12540-015-1003-y .
Jeong, D. H., Sung, H. K., Kwon, Y. N., & Kim, S. S. (2016a). Effect of superplastic forming exposure on tensile and S-N fatigue behavior of Ti64 alloy. Met Mater Int, 22(4), 594–600. doi: 10.1007/s12540-016-6041-6 .
Jeong, D. H., Sung H. K., Kwon, Y. N., & Kim, S. S. (2016). Effect of superplastic forming exposure on fatigue crack propagation behavior of Ti-6Al-4V alloy. Met Mater Int, accepted. doi: 10.1007/s12540-016-6075-9
Jung, D. H., Kwon, J. K., Woo, N. S., Kim, Y. J., Goto, M., & Kim, S. S. (2014). S-N fatigue and fatigue crack propagation behaviors of X80 steel at room and low temperatures. Metall Mater Trans A, 45A, 654–662. doi: 10.1007/s11661-013-2012-4 .
Kaminaka, H., Abe, M., Matsumoto, S., Kimura, K., & Kamio, H. (2014). Characteristics and applications of high corrosion resistant titanium alloys. Nippon Steel & Sumitomo Metal Technical Report, 106, 34–40.
Kim, Y. J., Kwon, J. K., Lee, H. J., Jang, W. K., Choi, J. K., & Kim, S. S. (2011). Effect of microstructure on fatigue crack propagation and S-N fatigue behaviors of TMCP steels with yield strengths of approximately 450 MPa. Metall Mater Trans A, 42A, 986–999. doi: 10.1007/s11661-010-0577-8 .
Kim, S. S., Kwon, J. K., Kim, Y. J., Jang, W. K., Lee, S. G., & Choi, J. K. (2013). Factors influencing fatigue crack propagation behavior of austenitic steels. Mel Mater Int, 19(4), 1–8. doi: 10.1007/s12540-013-4007-5 .
Lucas, J. J., & Konieczny, P. P. (1971). Relationship between alpha grain size and crack initiation fatigue strength in Ti-6AI-4 V. Metall Mater Trans A, 2A, 911–912. doi: 10.1007/BF02662756 .
Lütjering, G. (1998). Influence of processing on microstructure and mechanical properties of (α + β) titanium alloys. Mater Sci Eng, A243, 32–45. doi: 10.1016/S0921-5093(97)00778-8 .
Lütjering, G., & Williams, J. C. (2013). Titanium. Berlin: Springer Science & Business Media.
Morita, T., Hatsuoka, K., Iizuka, T., & Kawasaki, K. (2005). Strengthening of Ti–6Al–4 V alloy by short-time duplex heat treatment. Mater Trans, 46(7), 1681–1686. doi: 10.2320/matertrans.46.1681 .
Mrazova, M. (2013). Advanced composite materials of the future in aerospace industry. Incas Bulletin, 5(3), 139–150. doi: 10.13111/2066-8201.2013.5.3.14 .
Nicholas, T. (2006). High cycle fatigue: a mechanics of materials perspective. Amsterdam: Elsevier.
Rajan, T. V., Sharma, C. P., & Sharma, A. (2011). Heat treatment: principles and techniques. New Delhi: PHI Learning Pvt. Ltd.
Ruppen, J., Bhowal, P., Eylon, D., & McEvily, A. J. (1979). On the process of subsurface fatigue crack initiation in Ti-6Al-4V. In J. Fong (Ed.), Fatigue mechanisms, ASTM STP 675 (p. 47). Philadelphia: American Society for Testing and Materials.
Semiatin, S. L., Knisley, S. L., Fagin, P. N., Zhang, F., & Barker, D. R. (2003). Microstructure evolution during alpha-beta heat treatment of Ti-6Al-4 V. Metall Mater Trans A, 34A, 2377–2386. doi: 10.1007/s11661-003-0300-0 .
Starke, E. A., & Williams, J. C. (1989). Microstructure and the farcture mechanics of fatigue crack propagation. In R. P. Wei & R. P. Gangloff (Eds.), Fracture mechanics: perspectives and directions, ASTM STP1020 (p. 184). Philadelphia: American Society for Testing and Materials.
Sung, H. K., Jeong, D. H., Park, T. D., Lee, J. S. & Kim, S. S. (2016). S-N fatigue behavior of Fe25Mn steel and its weld at 298 and 110 K. Met Mater Int, accepted. doi: 10.1007/s12540-016-6108-4
Suresh, S. (1983). Crack deflection: implications for the growth of long and short fatigue cracks. Metall Mater Trans A, 14A, 2375–2385. doi: 10.1007/BF02663313 .
Suresh, S. (1985). Fatigue crack deflection and fracture surface contact: micromechanical models. Metall Mater Trans A, 16A, 249–260. doi: 10.1007/BF02815306 .
Suresh, S., & Ritchie, R. O. (1982). A geometric model for fatigue crack closure induced by fracture surface morphology. Metall Mater Trans A, 13A, 1627–1631. doi: 10.1007/BF02644803 .
Venkatesh, B. D., Chen, D. L., & Bhole, S. D. (2009). Effect of heat treatment on mechanical properties of Ti–6Al–4 V ELI alloy. Mater Sci Eng, A506, 117–124. doi: 10.1016/j.msea.2008.11.018 .
Wanhill, R., & Barter, S. (2011). Fatigue of beta processed and beta heat-treated titanium alloys. Berlin: Springer Science & Business Media.
Welsch, G., Boyer, R., & Collings, E. W. (1993). Materials properties handbook: titanium alloys. Ohio: ASM International.
Yoder, G. R., Cooley, L. A., & Crooker, T. W. (1976). A micromechanistic interpretation of cyclic crack-growth behavior in a beta-annealed Ti-6Al-4V alloy. Washington: US Naval Research Lab.