High conductivity and high density SrCe0.5Zr0.35Y0.1A0.05O3-δ (A = Gd, Sm) proton-conducting electrolytes for IT-SOFCs
Tóm tắt
A novel Sr-based perovskite electrolyte, SrCe0.5Zr0.35Y0.1Gd0.05O3-δ, was successfully synthesized and characterized in comparison with SrCe0.5Zr0.35Y0.1Sm0.05O3-δ for possible use in proton-conducting solid oxide fuel cells. Indexing and subsequent Rietveld refinement confirm that both materials crystallize in the orthorhombic symmetry with Pbnm space group. Scanning electron microscopy images show the highly dense structure with the relative densities of 96% and 97% for Gd and Sm-doped sample, respectively. Electrochemical impedance measurements in wet 5% hydrogen at 700 °C shows that the conductivity of SrCe0.5Zr0.35Y0.1Gd0.05O3-δ and SrCe0.5Zr0.35Y0.1Sm0.05O3-δ were 5.701 ×10−3 S cm−1 and 5.257 × 10−3 S cm−1, respectively. The ionic conductivities of both samples increase in the wet hydrogen compared with that of dry hydrogen atmosphere. This indicates the enhancement of protonic conduction mechanism from introducing water in electrochemical impedance measurement. The proton conduction takes place at a lower temperature than conventional solid oxide fuel cell (SOFC) which makes SrCe0.5Zr0.35Y0.1(Gd/Sm)0.05O3-δ good electrolytes for intermediate-temperature solid oxide fuel cell (IT-SOFC).
Tài liệu tham khảo
Park S, Vohs JM, Gorte RJ (2000) Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404:265–267. https://doi.org/10.1038/35005040
Atkinson A, Barnett S, Gorte RJ, Irvine JT, McEvoy A, Mogensen M, Singhal SC, Vohs J (2004) Advanced anodes for high-temperature fuel cells. Nat Mater 3:17–27. https://doi.org/10.1038/nmat1040
Iguchi TH, Sukamoto TT, Ata NS et al (2001) Protonic conduction in the single crystals of SrZr0.95M0.05O3 (M = Y, Sc, Yb, Er). Jpn J Appl Phys 40:4162–4163
Radenahmad N, Afif A, Petra PI et al (2016) Proton-conducting electrolytes for direct methanol and direct urea fuel cells–a state-of-the-art review. Renew Sust Energ Rev 57:1347–1358. https://doi.org/10.1016/j.rser.2015.12.103
Hossain S, Abdalla AM, Jamain SNB et al (2017) A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renew Sust Energ Rev 79:750–764. https://doi.org/10.1016/j.rser.2017.05.147
Rashid NLRM, Samat AA, Jais AA et al (2019) Review on zirconate-cerate-based electrolytes for proton-conducting solid-oxide fuel cell. Ceram Int 45:6605–6615. https://doi.org/10.1016/j.ceramint.2019.01.045
Iwahara H (1992) Oxide-ionic and protonic conductors based on perovskite-type oxides and their possible applications. Solid State Ionics 52:99–104. https://doi.org/10.1016/0167-2738(92)90095-7
Naeem Khan M, Azad AK, Savaniu CD, Hing P, Irvine JTS (2017) Robust doped BaCeO3-δ electrolyte for IT-SOFCs. Ionics (Kiel) 23:2387–2396. https://doi.org/10.1007/s11581-017-2086-x
Jingde LÜ, Ling W, Lihua FAN et al (2008) Chemical stability of doped BaCeO3-BaZrO3 solid solutions in different atmospheres. J Rare Earths 26:505–510
Naeem Khan M, Savaniu CD, Azad AK et al (2017) Wet chemical synthesis and characterisation of Ba0.5Sr0.5Ce0.6Zr0.2Gd0.1Y0.1O3−δ proton conductor. Solid State Ionics 303:52–57. https://doi.org/10.1016/j.ssi.2017.01.001
Medvedev DA, Lyagaeva JG, Gorbova EV et al (2016) Advanced materials for SOFC application: strategies for the development of highly conductive and stable solid oxide proton electrolytes. Prog Mater Sci 75:38–79
Azad AK, Kruth A, Irvine JTS (2014) Influence of atmosphere on redox structure of BaCe 0.9 Y 0.1 O 2.95--insight from neutron diffraction study. Int J Hydrog Energy 39:12804–12811
Azad AK, Savaniu C, Tao S et al (2008) Structural origins of the differing grain conductivity values in BaZr0.9Y0.1O2.95 and indication of novel approach to counter defect association. J Mater Chem 18:3414
Bu J, Jönsson PG, Zhao Z (2015) Sintering behaviour of the protonic conductors BaZrxCe0.8-xLn0.2O3-δ (x= 0.8, 0.5, 0.1; Ln= Y, Sm, Gd, Dy) during the solid-state reactive-sintering process. Ceram Int 41:2558–2564. https://doi.org/10.1016/j.ceramint.2014.10.177
Radenahmad N, Afif A, Petra MI et al (2016) High conductivity and high density proton conducting Ba1-xSrxCe0.5Zr0.35Y0.1Sm0.05O3-δ (x= 0.5, 0.7, 0.9, 1.0) perovskites for IT-SOFC. Int J Hydrog Energy 41:11832–11841. https://doi.org/10.1016/j.ijhydene.2016.02.073
Afif A, Radenahmad N, Lim CM et al (2016) Structural study and proton conductivity in BaCe0.7Zr0.25−xYxZn0.05O3 (x= 0.05, 0.1, 0.15, 0.2 & 0.25). Int J Hydrog Energy 41:11823–11831. https://doi.org/10.1016/j.ijhydene.2016.02.135
Matsumoto H, Shimura T, Iwahara H et al (2006) Hydrogen separation using proton-conducting perovskites. J Alloys Compd 408–412:456–462. https://doi.org/10.1016/J.JALLCOM.2004.12.093
Song S-J, Wachsman ED, Rhodes J et al (2004) Hydrogen permeability of SrCe1-xMxO3-δ (x= 0.05, M= Eu, Sm). Solid State Ionics 167:99–105. https://doi.org/10.1016/J.SSI.2003.12.010
Azad AK, Irvine JTS (2008) High density and low temperature sintered proton conductor BaCe 0.5Zr0.35Sc0.1Zn0.05O 3- δ. Solid State Ionics 179:678–682. https://doi.org/10.1016/j.ssi.2008.04.036
Azad AK, Irvine JTS (2009) Location of deuterium positions in the proton-conducting perovskite BaCe0.4Zr0.4Sc0.2O2.90·xD2O by neutron powder diffraction. Chem Mater 21:215–222. https://doi.org/10.1021/cm8031847
Lagaeva J, Medvedev D, Demin A, Tsiakaras P (2015) Insights on thermal and transport features of BaCe0.8− xZrxY0.2O3− δ proton-conducting materials. J Power Sources 278:436–444. https://doi.org/10.1016/j.jpowsour.2014.12.024
Liou Y-C, Yang S-L (2008) A simple and effective process for Sr0.995Ce0.95Y0.05O3−δ and BaCe0.9Nd0.1O3−δ solid electrolyte ceramics. J Power Sources 179:553–559. https://doi.org/10.1016/J.JPOWSOUR.2008.01.012
Kosacki I, Tuller HL (1995) Mixed conductivity in SrCe0.95Yb0.05O3 protonic conductors. Solid State Ionics 80:223–229. https://doi.org/10.1016/0167-2738(95)00142-S
Kruth A, Mather GC, Jurado JR, Irvine JTS (2005) Anomalous variations of unit cell parameters with composition in proton conducting, ACeO3-type perovskite solid solutions. Solid State Ionics 176:703–712. https://doi.org/10.1016/J.SSI.2004.10.014
Qi X, Lin Y (2000) Electrical conduction and hydrogen permeation through mixed proton–electron conducting strontium cerate membranes. Solid State Ionics 130:149–156. https://doi.org/10.1016/S0167-2738(00)00281-2
Wei X, Kniep J, Lin YS (2009) Hydrogen permeation through terbium doped strontium cerate membranes enabled by presence of reducing gas in the downstream. J Membr Sci 345:201–206. https://doi.org/10.1016/J.MEMSCI.2009.08.041
Hamakawa S, Li L, Li A, Iglesia E (2002) Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3-α thin films. Solid State Ionics 48:71–81. https://doi.org/10.1016/S0167-2738(02)00047-4
Sumi H, Suda E, Mori M (2017) Blocking layer for prevention of current leakage for reversible solid oxide fuel cells and electrolysis cells with ceria-based electrolyte. Int J Hydrog Energy 42:4449–4455. https://doi.org/10.1016/J.IJHYDENE.2016.09.176
Gilardi E, Fabbri E, Bi L et al (2017) Effect of dopant–host ionic radii mismatch on acceptor-doped barium zirconate microstructure and proton conductivity. J Phys Chem C 121:9739–9747. https://doi.org/10.1021/acs.jpcc.7b02163
Amsif M, Marrero-Lopez D, Ruiz-Morales JC et al (2011) Influence of rare-earth doping on the microstructure and conductivity of BaCe0.9Ln0.1O3-δ proton conductors. J Power Sources 196:3461–3469. https://doi.org/10.1016/j.jpowsour.2010.11.120
Iwahara H, Yajima T, Hibino T et al (1993) Protonic conduction in calcium, strontium and barium zirconates. Solid State Ionics 61:65–69. https://doi.org/10.1016/0167-2738(93)90335-Z
Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767. https://doi.org/10.1107/S0567739476001551
Werner PE, Eriksson L, Westdahl M (1985) TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries. J Appl Crystallogr 18:367–370. https://doi.org/10.1107/S0021889885010512
Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction + FullProf. Phys B Condens Matter 192:55
Kurita N, Fukatsu N, Ito K, Ohashi T (1995) Protonic conduction domain of indium-doped calcium zirconate. J Electrochem Soc 142:1552–1559
Liu S, Tan X, Li K, Hughes R (2002) Synthesis of strontium cerates-based perovskite ceramics via water-soluble complex precursor routes. Ceram Int 28:327–335. https://doi.org/10.1016/S0272-8842(01)00098-0
Song S-J, Wachsman ED, Dorris SE, Balachandran U (2003) Defect structure and n-type electrical properties of SrCe0.95Eu0.05O3-δ. J Electrochem Soc 150:A1484–A1490. https://doi.org/10.1149/1.1614796
Agmon N (1995) The Grotthuss mechanism. Chem Phys Lett 244:456–462. https://doi.org/10.1016/0009-2614(95)00905-J
Bu J, Jönsson PG, Zhao Z (2014) Ionic conductivity of dense BaZr0.5Ce0.3Ln0.2O3-δ (Ln= Y, Sm, Gd, Dy) electrolytes. J Power Sources 272:786–793. https://doi.org/10.1016/j.jpowsour.2014.09.056
Gu Y-J, Liu Z-G, Ouyang J-H, et al (2013) Structure and electrical conductivity of BaCe0.85Ln0.15O3 − δ (Ln= Gd, Y, Yb) ceramics. Electrochim Acta 105:547–553. doi: https://doi.org/10.1016/J.ELECTACTA.2013.05.034
Shin S, Huang HH, Ishigame M, Iwahara H (1990) Protonic conduction in the single crystals of SrZrO3 and SrCeO3 doped with Y2O3. Solid State Ionics 40–41:910–913. https://doi.org/10.1016/0167-2738(90)90151-G
Oh T, Yoon H, Wachsman ED (2009) Effect of Eu dopant concentration in SrCe1−xEuxO3−δ on ambipolar conductivity. Solid State Ionics 180:1233–1239. https://doi.org/10.1016/J.SSI.2009.07.001
Liu C, Huang J-J, Fu Y-P et al (2015) Effect of potassium substituted for A-site of SrCe0.95Y0.05O3 on microstructure, conductivity and chemical stability. Ceram Int 41:2948–2954. https://doi.org/10.1016/J.CERAMINT.2014.10.126
Satapathy A, Sinha E (2019) A comparative proton conductivity study on Yb-doped BaZrO3 perovskite at intermediate temperatures under wet N2 environment. J Alloys Compd 772:675–682. https://doi.org/10.1016/J.JALLCOM.2018.08.329