Quy trình Hàn Ảnh Hưởng Tốc Độ Cao: Một Tổng Quan

Metals - Tập 9 Số 2 - Trang 144
Huimin Wang1, Yuliang Wang2,3
1National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
2Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
3School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China

Tóm tắt

Hàn ảnh hưởng tốc độ cao là một loại quy trình hàn trạng thái rắn, là một trong những giải pháp để kết nối các vật liệu khác nhau mà không làm phát sinh các hợp kim giữa. Đến nay, đã có năm phương pháp chính được phát triển. Đó là hàn súng khí (GGW), hàn nổ (EXW), hàn xung từ trường (MPW), hàn tác nhân lá bay hơi (VFAW) và hàn tác động bằng laser (LIW). Tất cả đều có cơ chế hàn tương tự, nhưng chúng cũng có nguồn năng lượng và ứng dụng khác nhau. Bài đánh giá này chủ yếu tập trung vào nghiên cứu liên quan đến thiết lập thí nghiệm của các phương pháp hàn khác nhau, hiện tượng tia, đặc điểm giao diện hàn và các tham số hàn. Phần giới thiệu nêu bật tầm quan trọng của hàn ảnh hưởng tốc độ cao trong việc kết nối các vật liệu khác nhau. Bài đánh giá về các thiết lập thí nghiệm cung cấp tình hình hiện tại và các hạn chế của các quy trình hàn khác nhau. Hiện tượng tia, đặc điểm giao diện hàn và các tham số hàn đều liên quan đến cơ chế hàn. Kết luận và công việc trong tương lai được tóm tắt lại.

Từ khóa

#Hàn tốc độ cao #quá trình hàn #vật liệu khác nhau #thiết lập thí nghiệm #hiện tượng tia

Tài liệu tham khảo

Crossland, B. (1982). Explosive Welding of Metals and Its Application, Oxford University Press.

Debroy, 1995, Physical processes in fusion-welding, Rev. Mod. Phys., 67, 85, 10.1103/RevModPhys.67.85

Li, 2007, Novel technique for laser lap welding of zinc coated sheet steels, J. Laser Appl., 19, 259, 10.2351/1.2795755

Durgutlu, 2005, Examination of copper/stainless steel joints formed by explosive welding, Mater. Des., 26, 497, 10.1016/j.matdes.2004.07.021

Taban, 2009, Characterization of 6061-T6 aluminum alloy to AISI 1018 steel interfaces during joining and thermo-mechanical conditioning, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 527, 1704, 10.1016/j.msea.2009.10.059

Sun, 1995, Laser-welding of dissimilar metal combinations, J. Mater. Sci., 30, 4205, 10.1007/BF00361499

Torkamany, 2009, Dissimilar welding of carbon steel to 5754 aluminum alloy by Nd:YAG pulsed laser, Mater. Des., 31, 458, 10.1016/j.matdes.2009.05.046

Yan, 2009, Microstructure and properties of magnesium AZ31B-aluminum 7075 explosively welded composite plate, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 527, 2241, 10.1016/j.msea.2009.12.007

Fuller, 2009, Evolution of microstructure and mechanical properties in naturally aged 7050 and 7075 Al friction stir welds, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 527, 2233, 10.1016/j.msea.2009.11.057

Atasoy, 2008, Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer, Mater. Charact., 59, 1481, 10.1016/j.matchar.2008.01.015

Liu, 2002, Joint strength of laser-welded titanium, Dent. Mater., 18, 143, 10.1016/S0109-5641(01)00033-1

Qi, 2000, Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 280, 177, 10.1016/S0921-5093(99)00662-0

Strand, 2006, Compact system for high-speed velocimetry using heterodyne techniques, Rev. Sci. Instrum., 77, 083108, 10.1063/1.2336749

Acarer, 2003, Investigation of explosive welding parameters and their effects on microhardness and shear strength, Mater. Des., 24, 659, 10.1016/S0261-3069(03)00066-9

Mendes, 2013, Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration, Mater. Des., 51, 182, 10.1016/j.matdes.2013.03.069

Vivek, 2013, Vaporizing foil actuator: A tool for collision welding, J. Mater. Process. Technol., 213, 2304, 10.1016/j.jmatprotec.2013.07.006

Wang, 2015, Laser impact welding: Design of apparatus and parametric optimization, J. Manuf. Process., 19, 118, 10.1016/j.jmapro.2015.05.007

Zhang, 2011, Application of high velocity impact welding at varied different length scales, J. Mater. Process. Technol., 211, 944, 10.1016/j.jmatprotec.2010.01.001

Bahrani, 1967, Mechanics of wave formation in explosive welding, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 296, 123

Young, G. (2004, January 20–22). Explosive welding, technical growth and commercial history. Proceedings of the Stainless Steel World 2004, Houston, TX, USA.

Philipchuk, V., Scituate, N., and Roy, L.F. (1962). Explosive Welding. (3,024,526), U.S. patent.

Carpenter, 1975, Explosion welding, Annu. Rev. Mater. Sci., 5, 177, 10.1146/annurev.ms.05.080175.001141

Rozumek, 2012, Crack growth rate under cyclic bending in the explosively welded steel/titanium bimetals, Mater. Des., 38, 139, 10.1016/j.matdes.2012.02.014

Karolczuk, 2013, Fatigue phenomena in explosively welded steel–titanium clad components subjected to push–pull loading, Int. J. Fatigue, 48, 101, 10.1016/j.ijfatigue.2012.10.007

Xie, M.-X., Shang, X.-T., Zhang, L.-J., Bai, Q.-L., and Xu, T.-T. (2018). Interface Characteristic of Explosive-Welded and Hot-Rolled TA1/X65 Bimetallic Plate. Metals, 8.

Rozumek, 2017, Static and fatigue tests of bimetal Zr-steel made by explosive welding, Eng. Fail. Anal., 75, 71, 10.1016/j.engfailanal.2016.12.022

Szachogluchowicz, 2016, Low cycle fatigue properties of AA2519–Ti6Al4V laminate bonded by explosion welding, Eng. Fail. Anal., 69, 77, 10.1016/j.engfailanal.2016.01.001

Topolski, 2016, Microstructure and Properties of the Ti6Al4V/Inconel 625 Bimetal Obtained by Explosive Joining, J. Mater. Eng. Perform., 25, 3231, 10.1007/s11665-016-2080-x

Kaya, Y. (2018). Microstructural, Mechanical and Corrosion Investigations of Ship Steel-Aluminum Bimetal Composites Produced by Explosive Welding. Metals, 8.

Findik, 2011, Recent developments in explosive welding, Mater. Des., 32, 1081, 10.1016/j.matdes.2010.10.017

Carvalho, 2018, Influence of base material properties on copper and aluminium–copper explosive welds, Sci. Technol. Weld. Join., 23, 501, 10.1080/13621718.2017.1417783

Botros, 1980, Fundamental impact-welding parameters—An experimental investigation using a 76-Mm powder cannon, J. Appl. Phys., 51, 3706, 10.1063/1.328156

Chizari, 2009, Single and double plate impact welding: Experimental and numerical simulation, Comput. Mater. Sci., 46, 828, 10.1016/j.commatsci.2009.04.018

Mousavi, 2005, Numerical and experimental studies of the mechanism of the wavy interface formations in explosive/impact welding, J. Mech. Phys. Solids, 53, 2501, 10.1016/j.jmps.2005.06.001

Katzenstein, J. (1985). System and Method for Impact Welding by Magnetic Propulsion. (4,504,714), U.S. patent.

Lee, 2007, Interfacial microstructure and strength of steel/aluminum alloy lap joint fabricated by magnetic pressure seam welding, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 471, 95, 10.1016/j.msea.2007.04.033

Kochan, 2000, Magnetic pulse welding shows potential for automotive applications, Assem. Autom., 20, 129, 10.1108/01445150010321742

Kore, 2009, Electromagnetic impact welding of copper-to-copper sheets, Int. J. Mater. Form., 3, 117, 10.1007/s12289-009-0661-z

Hokari, 1998, Magnetic impulse welding of aluminium tube and copper tube with various core materials, Weld. Int., 12, 619, 10.1080/09507119809452024

Marya, 2004, Interfacial microstructures and temperatures in aluminium-copper electromagnetic pulse welds, Sci. Technol. Weld. Join., 9, 541, 10.1179/174329304X8685

Patra, 2017, Interface characteristics and performance of magnetic pulse welded copper-Steel tubes, J. Mater. Process. Technol., 245, 278, 10.1016/j.jmatprotec.2017.03.001

Kore, 2009, Electromagnetic impact welding of Mg to Al sheets, Sci. Technol. Weld. Join., 14, 549, 10.1179/136217109X449201

Stern, 2008, Interface phenomena in aluminium-magnesium magnetic pulse welding, Sci. Technol. Weld. Join., 13, 402, 10.1179/174329308X300136

Jiang, 2018, Texture evolution and plastic deformation mechanism in magnetic pulse welding of dissimilar Al and Mg alloys, Weld. World, 62, 1159, 10.1007/s40194-018-0607-5

Aizawa, 2007, Application of magnetic pulse welding for aluminum alloys and SPCC steel sheet joints, Weld. J., 86, 119S

Geng, 2018, Strain rate sensitivity of Al-Fe magnetic pulse welds, J. Mater. Process. Technol., 262, 1, 10.1016/j.jmatprotec.2018.06.021

Deng, 2018, Electromagnetic pulse spot welding of aluminum to stainless steel sheets with a field shaper, Int. J. Adv. Manuf. Technol., 98, 1903, 10.1007/s00170-018-2208-2

Cui, 2018, Effect of surface treatment on the mechanical properties and microstructures of Al-Fe single-lap joint by magnetic pulse welding, Int. J. Adv. Manuf. Technol., 98, 1081, 10.1007/s00170-018-2262-9

Watanabe, 2009, Interfacial microstructure of aluminum/metallic glass lap joints fabricated by magnetic pulse welding, Mater. Trans., 50, 1279, 10.2320/matertrans.ME200835

Cui, 2019, Joining of tubular carbon fiber-reinforced plastic/aluminum by magnetic pulse welding, J. Mater. Process. Technol., 264, 273, 10.1016/j.jmatprotec.2018.09.018

Kamal, 2007, A uniform pressure electromagnetic actuator for forming flat sheets, J. Manuf. Sci. Eng. Trans. ASME, 129, 369, 10.1115/1.2515481

Kore, 2008, Electromagnetic impact welding of aluminum to stainless steel sheets, J. Mater. Process. Technol., 208, 486, 10.1016/j.jmatprotec.2008.01.039

Kore, 2009, Electromagnetic impact welding of Al-to-Al-Li sheets, J. Manuf. Sci. Eng. Trans. ASME, 131, 1, 10.1115/1.3123338

Zhang, Y., Babu, S., and Daehn, G.S. (2010, January 9–10). Impact welding in a variety of geometric configurations. Proceedings of the 4th International Conference on High Speed Forming, Columbus, OH, USA.

Daehn, G.S., and Lippold, J.C. (2011). Low Temperature Spot Impact Welding Driven without Contact. (8084710B2), U.S. patent.

Wang, 2016, Laser impact welding application in joining aluminum to titanium, J. Laser Appl., 28, 032002, 10.2351/1.4946887

Liu, H., Gao, S., Yan, Z., Li, L., Li, C., Sun, X., Sha, C., Shen, Z., Ma, Y., and Wang, X. (2016). Investigation on a Novel Laser Impact Spot Welding. Metals, 6.

Wang, 2017, Laser-driven flyer application in thin film dissimilar materials welding and spalling, Opt. Lasers Eng., 97, 1, 10.1016/j.optlaseng.2017.04.016

Wang, 2018, Numerical simulation of laser impact spot welding, J. Manuf. Process., 35, 396, 10.1016/j.jmapro.2018.08.028

Vivek, A. (2012). Rapid Vaporization of Thin Conductors Used for Impulse Metalworking. [Ph.D. Thesis, The Ohio State University].

Chen, 2019, Interfacial characteristics of Ti/Al joint by vaporizing foil actuator welding, J. Mater. Process. Technol., 263, 73, 10.1016/j.jmatprotec.2018.08.004

Lee, 2018, Flyer thickness effect in the impact welding of aluminum to steel, J. Manuf. Sci. Eng., 140, 121002, 10.1115/1.4041247

Liu, 2017, Joining sheet aluminum AA6061-T4 to cast magnesium AM60B by vaporizing foil actuator welding: Input energy, interface, and strength, J. Manuf. Process., 30, 75, 10.1016/j.jmapro.2017.09.008

Chen, 2016, Interfacial microstructures and mechanical property of vaporizing foil actuator welding of aluminum alloy to steel, Mater. Sci. Eng. A, 659, 12, 10.1016/j.msea.2016.02.040

Vivek, 2015, Solid state impact welding of BMG and copper by vaporizing foil actuator welding, Mater. Sci. Eng. A, 634, 14, 10.1016/j.msea.2015.03.012

Hahn, 2016, Vaporizing foil actuator welding as a competing technology to magnetic pulse welding, J. Mater. Process. Technol., 230, 8, 10.1016/j.jmatprotec.2015.11.010

Gupta, 2019, A robust process-structure model for predicting the joint interface structure in impact welding, J. Mater. Process. Technol., 264, 107, 10.1016/j.jmatprotec.2018.08.047

Birkhoff, 1948, Explosives with lined cavities, J. Appl. Phys., 19, 563, 10.1063/1.1698173

Cowan, 1963, Flow configurations in colliding plates-explosive bonding, J. Appl. Phys., 34, 928, 10.1063/1.1729565

Bahrani, 1964, Explosive welding and cladding: An introductory survey and preliminary results, Proc. Inst. Mech. Eng., 179, 264, 10.1243/PIME_PROC_1964_179_023_02

Szecket, 1985, A wavy versus straight interface in the explosive welding of aluminum to steel, J. Vac. Sci. Technol. A, 3, 2588, 10.1116/1.572839

Jaramillo, 1987, On the transition from a waveless to a wave interface in explosive welding, Mater. Sci. Eng., 91, 217, 10.1016/0025-5416(87)90300-4

Gulenc, 2008, Investigation of interface properties and weldability of aluminum and copper plates by explosive welding method, Mater. Des., 29, 275, 10.1016/j.matdes.2006.11.001

Acarer, 2008, An investigation of mechanical and metallurgical properties of explosive welded aluminum-dual phase steel, Mater. Lett., 62, 4158, 10.1016/j.matlet.2008.05.060

Acarer, 2003, Microstructure-property relationship in explosively welded duplex stainless steel-steel, Mater. Sci. Eng. A, 363, 290, 10.1016/S0921-5093(03)00643-9

Kahraman, 2005, Joining of titanium/stainless steel by explosive welding and effect on interface, J. Mater. Process. Technol., 169, 127, 10.1016/j.jmatprotec.2005.06.045

Mousavi, 2009, Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel, Mater. Des., 30, 459, 10.1016/j.matdes.2008.06.016

Kahraman, 2005, Microstructural and mechanical properties of Cu-Ti plates bonded through explosive welding process, J. Mater. Process. Technol., 169, 67, 10.1016/j.jmatprotec.2005.02.264

Mousavi, 2008, Bond strength of explosively welded specimens, Mater. Des., 29, 1334, 10.1016/j.matdes.2007.06.010

Nassiri, 2015, Arbitrary Lagrangian–Eulerian finite element simulation and experimental investigation of wavy interfacial morphology during high velocity impact welding, Mater. Des., 88, 345, 10.1016/j.matdes.2015.09.005

Loureiro, 2016, Effect of explosive mixture on quality of explosive welds of copper to aluminium, Mater. Des., 95, 256, 10.1016/j.matdes.2016.01.116

Inal, 1985, Explosive welding of Ti-6al-4v to mild-steel substrates, J. Vac. Sci. Technol. A Vac. Surf. Films, 3, 2605, 10.1116/1.572843

Zhang, 2008, Microstructure characterisation of magnetic pulse welded AA6061-T6 by electron backscattered diffraction, Sci. Technol. Weld. Join., 13, 467, 10.1179/174329308X341915

Liu, 2008, Atomic-scale bonding of bulk metallic glass to crystalline aluminum, Appl. Phys. Lett., 93, 1

Göbel, G., Kaspar, J., Herrmannsdörfer, T., Brenner, B., and Beyer, E. (2010, January 9–10). Insights into intermetallic phases on pulse welded dissimilar metal joints. Proceedings of the 4th International Conference on High Speed Forming, Columbus, OH, USA.

Stern, 2002, Bonding zone formation in magnetic pulse welds, Sci. Technol. Weld. Join., 7, 339, 10.1179/136217102225002673

Nishida, 1995, Electron-microscopy studies of bonding interface in explosively welded Ti/Steel clads, Isij Int., 35, 217, 10.2355/isijinternational.35.217

Zhang, 2010, Interfacial ultrafine-grained structures on aluminum alloy 6061 joint and copper alloy 110 joint fabricated by magnetic pulse welding, J. Mater. Sci., 45, 4645, 10.1007/s10853-010-4676-0

Wronka, 2010, Testing of explosive welding and welded joints: Joint mechanism and properties of explosive welded joints, J. Mater. Sci., 45, 4078, 10.1007/s10853-010-4494-4

Grignon, 2004, Explosive welding of aluminum to aluminum: Analysis, computations and experiments, Int. J. Impact Eng., 30, 1333, 10.1016/j.ijimpeng.2003.09.049

Carvalho, 2018, Formation of intermetallic structures at the interface of steel-to-aluminium explosive welds, Mater. Charact., 142, 432, 10.1016/j.matchar.2018.06.005

Carvalho, 2018, Explosive welding of aluminium to stainless steel, J. Mater. Process. Technol., 262, 340, 10.1016/j.jmatprotec.2018.06.042

Bellmann, 2018, Influence of the flyer kinetics on magnetic pulse welding of tubes, J. Mater. Process. Technol., 262, 189, 10.1016/j.jmatprotec.2018.06.005

Carvalho, 2017, Effect of the flyer material on the interface phenomena in aluminium and copper explosive welds, Mater. Des., 122, 172, 10.1016/j.matdes.2017.02.087

Deribas, 1967, Effect of initial parameters on process of wave formation in explosive welding, Combust. Expl. Shock Waves, 3, 344, 10.1007/BF00741684

Durgutlu, 2008, Investigation of effect of the stand-off distance on interface characteristics of explosively welded copper and stainless steel, Mater. Des., 29, 1480, 10.1016/j.matdes.2007.07.012