High Temperature and Lubricating Wear Behaviour of In-Situ Al-20Mg2Si Composite

Rahul Bhandari1, Prosanta Biswas1, Manab Mallik1, Manas Kumar Mondal1
1Department of Metallurgical and Materials Engineering, National Institute of Technology, Durgapur, Durgapur, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

P. Biswas, D. Mandal, M.K. Mondal, Micromechanical response of Al–Mg2Si composites using approximated representative volume elements (RVEs) model. Mater. Res. Express 6, 1165c6 (2019). https://doi.org/10.1088/2053-1591/ab4e4f

M.R. Moazami, A. Razaghian, A. Moharami et al., Enhancing the elevated temperatures tribological properties of Al–Mg2Si composites by in-situ addition of Ti-based intermetallics and hot working. J. Mater. Res. Technol. 21, 1381–1394 (2022). https://doi.org/10.1016/j.jmrt.2022.09.120

S. Farahany, H. Ghandvar, N.A. Nordin et al., Microstructure characterization, mechanical, and tribological properties of slow-cooled Sb-treated Al-20Mg2Si-Cu in situ composites. J. Mater. Eng. Perform. 26, 1685–1700 (2017). https://doi.org/10.1007/s11665-017-2624-8

A. Moharami, A. Razaghian, B. Babaei et al., Role of Mg2Si particles on mechanical, wear, and corrosion behaviors of friction stir welding of AA6061-T6 and Al-Mg2Si composite. J. Compos. Mater. 54, 4035–4057 (2020). https://doi.org/10.1177/0021998320925528

A. Moharrami, A. Razaghian, M. Emamy et al., Effect of tool pin profile on the microstructure and tribological properties of friction stir processed Al-20 wt% Mg2Si composite. J. Tribol.Tribol. 141, 122202 (2019). https://doi.org/10.1115/1.4044672

B. Bülbül, M. Okumuş, Microstructure, hardness, thermal and wear behaviours in Al–10Ni/TiO2 composites fabricated by mechanical alloying. Mater. Chem. Phys. 281, 125908 (2022). https://doi.org/10.1016/j.matchemphys.2022.125908

Y. Jin, H. Fang, S. Wang et al., Improvement of microstructure and mechanical properties of near-eutectic Al–Mg2Si alloys by Eu addition. Adv. Eng. Mater. 23(4), 2001447 (2021). https://doi.org/10.1002/adem.202001447

M. Sun, L. Lu, X. Bai et al., The time-dependent reliability analysis of brake piston special-shaped seal of the caliper disc brake. J. Sens. 2022, 2820010 (2022). https://doi.org/10.1155/2022/2820010

Y. Li, T. Liu, S. Chen et al., Effect of Ce Inoculation on microstructure and mechanical properties of in situ Al–20%Mg2Si composite. Int. J. Metalcast.Metalcast. 13, 331–336 (2019). https://doi.org/10.1007/s40962-018-0252-1

R. Bhandari, P. Biswas, M. Mallik et al., Microstructure-based numerical simulation of the micromechanics and fracture in hypereutectic Al–Mg2Si composites. Mater. Chem. Phys. 297, 127427 (2023). https://doi.org/10.1016/j.matchemphys.2023.127427

A. Vajd, A. Samadi, Optimization of centrifugal casting parameters to produce the functionally graded Al–15wt% Mg2Si composites with higher tensile properties. Int. J. Metalcast.Metalcast. 14, 937–948 (2020). https://doi.org/10.1007/s40962-019-00394-1

S. Ashkvary, S.G. Shabestari, F. Yavari, Effect of cooling rate on the microstructure and solidification characteristics of Al–20% Mg2Si in situ composites using computer-aided thermal analysis technique. Int. J. Metalcast.Metalcast. 17(1), 322–333 (2023). https://doi.org/10.1007/s40962-022-00771-3

M. Ebrahimi, A. Zarei-Hanzaki, A.H. Shafieizad et al., High-temperature wear mechanisms of a severely plastic deformed Al/Mg2Si composite. J. Tribol.Tribol. 141, 031604 (2019). https://doi.org/10.1115/1.4041764

P. Biswas, M. Paliwal, M.K. Mondal, Thermochemical behavior, solidification, thermal stability, and oxidation of Al-Mg2Si composites: an experimental and thermodynamic study. Mater. Today Commun. 35, 105913 (2023). https://doi.org/10.1016/j.mtcomm.2023.105913

V.S. Ayar, M.P. Sutaria, Comparative Evaluation of ex situ and in situ method of fabricating aluminum/TiB2 composites. Int. J. Metalcast.Metalcast. 15, 1047–1056 (2021). https://doi.org/10.1007/s40962-020-00539-7

R. Bhandari, M. Mallik, M.K. Mondal, Microstructure evolution and mechanical properties of in situ hypereutectic Al-Mg2Si composites. AIP Conf. Proc. 2162(1), 020145 (2019). https://doi.org/10.1063/1.5130355

M.M. Khan, M. Nisar, Effect of in situ TiC reinforcement and applied load on the high-stress abrasive wear behaviour of zinc–aluminum alloy. Wear 488–489, 204082 (2022). https://doi.org/10.1016/j.wear.2021.204082

P. Biswas, D. Mandal, M.K. Mondal, Failure analysis of in-situ Al–Mg2Si composites using actual microstructure-based model. Mater. Sci. Eng. A 797, 140155 (2020). https://doi.org/10.1016/j.msea.2020.140155

X.F. Wu, Z.C. Wang, T. Cheng et al., Effects of Cu addition on microstructure and mechanical properties of Er-modified Al-10Mg2Si cast alloys. J. Cent. South Univ. 29, 795–806 (2022). https://doi.org/10.1007/s11771-022-4963-3

Y. Jin, H. Fang, S. Wang et al., Effects of Eu modification and heat treatment on microstructure and mechanical properties of hypereutectic Al–Mg2Si composites. Mater. Sci. Eng. A 831, 142227 (2022). https://doi.org/10.1016/j.msea.2021.142227

J. Qin, H. Nagaumi, C. Yu et al., Coarsening behavior of Mg2Si precipitates during post homogenization cooling process in Al-Mg-Si alloy. J. Alloys Compd. 902, 162851 (2022). https://doi.org/10.1016/j.jallcom.2021.162851

A.M. Nithin, M.J. Davidson, C.S.P. Rao, Effect of various Mg/Si ratios on microstructure and structural properties of thixoextruded Al-Si-Mg alloys. SILICON 14, 11675–11686 (2022). https://doi.org/10.1007/s12633-022-01689-5

M. Sharifzadeh, M.H. Shaeri, R. Taghiabadi et al., Investigating the combination effect of warm extrusion and multi-directional forging on microstructure and mechanical properties of Al–Mg2Si composites. Arch. Civ. Mech. 20, 1–11 (2020). https://doi.org/10.1007/s43452-020-00020-6

R. Zamani, H. Mirzadeh, M. Emamy, Evaluating the effect of hot-rolling reduction on the mechanical properties of in situ formed aluminum–magnesium–silicon (Al-Mg2Si) composites. Adv. Eng. Mater. 21, 1900609 (2019). https://doi.org/10.1002/adem.201900609

B. Wei, S. Li, T. Jiang et al., Optimization of Si content to inhibit inhomogeneous deformation in Al-Mg-Si alloy fabricated via twin-roll casting. Metals 12, 941 (2022). https://doi.org/10.3390/met12060941

M. Chegini, M.H. Shaeri, R. Taghiabadi et al., Effect of equal channel angular pressing on microstructure and mechanical properties of thermally-homogenized Al–Mg2Si composites. Mater. Chem. Phys. 259, 124200 (2021). https://doi.org/10.1016/j.matchemphys.2020.124200

P. Biswas, M.K. Mondal, D. Mandal, Effect of Mg2Si concentration on the dry sliding wear behavior of Al–Mg2Si composite. J. Tribol.Tribol. (2019). https://doi.org/10.1115/1.4043779

S. Farahany, H. Ghandvar, M. Bozorg et al., Role of Sr on microstructure, mechanical properties, wear and corrosion behaviour of an Al–Mg2Si–Cu in-situ composite. Mater. Chem. Phys. 239, 121954 (2020). https://doi.org/10.1016/j.matchemphys.2019.121954

J.N. Zhu, T.T. Zhou, M. Zha et al., Microstructure and wear behavior of Al-20Mg2Si alloy with combined Zr and Sb additions. J. Alloys Compd. 767, 1109–1116 (2018). https://doi.org/10.1016/j.jallcom.2018.07.032

S. Farahany, H. Ghandvar, N.A. Nordin et al., Effect of primary and eutectic Mg2Si crystal modifications on the mechanical properties and sliding wear behavior of an Al-20Mg2Si–2Cu–xBi composite. J. Mater. Sci. Technol. 32, 1083–1097 (2016). https://doi.org/10.1016/j.jmst.2016.01.014

H. Pourfallah, M. Shahmiri, Effect of SIMA process on microstructure and wear behavior of Al-Mg2Si-3% Ni composite. Metallogr. Microstruct. Anal. 8, 109–117 (2019). https://doi.org/10.1007/s13632-018-0500-z

H. Majdi, A. Razaghian, M. Emamy et al., The effects of Cu addition and solutionizing heat treatment on the microstructure and wear properties of hot-extruded Al–Mg2Si eutectic alloy. Adv. Mater. Process. Technol. 3, 164–173 (2017). https://doi.org/10.1080/2374068X.2016.1147768

X.F. Wu, G.A. Zhang, F.F. Wu, Influence of Bi addition on microstructure and dry sliding wear behaviors of cast Al-Mg2Si metal matrix composite. Trans. Nonferrous Met. Soc. China 23, 1532–1542 (2013). https://doi.org/10.1016/S1003-6326(13)62627-8

X.F. Wu, G.G. Zhang, F.F. Wu, Microstructure and dry sliding wear behavior of cast Al–Mg2Si in-situ metal matrix composite modified by Nd. Rare Met. 32(3), 284–289 (2013). https://doi.org/10.1007/s12598-013-0030-4

H.R. Jafari Nodooshan, W. Liu, G. Wu, Mechanical and tribological characterization of Al-Mg2Si composites after yttrium addition and heat treatment. J. Mater. Eng. Perform. 23, 1146–1156 (2014). https://doi.org/10.1007/s11665-014-0900-4

G. Rajaram, S. Kumaran, T.S. Rao et al., Studies on high temperature wear and its mechanism of Al–Si/graphite composite under dry sliding conditions. Tribol. Int.. Int. 43, 2152–2158 (2010). https://doi.org/10.1016/j.triboint.2010.06.004

S. Jerome, B. Ravisankar, P.K. Mahato, Synthesis and evaluation of mechanical and high-temperature tribological properties of in-situ Al–TiC composites. Tribol. Int.. Int. 43, 2029–2036 (2010). https://doi.org/10.1016/j.triboint.2010.05.007

S. Kumar, V.S. Sarma, B.S. Murty, High temperature wear behavior of Al–4Cu–TiB2 in situ composites. Wear 268, 1266–1274 (2010). https://doi.org/10.1016/j.wear.2010.01.022

Q. Gao, W. Wang, G. Yi et al., High temperature and room temperature tribological behaviors of in-situ carbides reinforced Ni-based composites by reactive sintering Ni and Ti2AlC precursor. Wear 488, 204165 (2022). https://doi.org/10.1016/j.wear.2021.204165

Y.Q. Wang, A.M. Afsar, J.H. Jang et al., Room temperature dry and lubricant wear behaviors of Al2O3f/SiCp/Al hybrid metal matrix composites. Wear 268, 863–870 (2010). https://doi.org/10.1016/j.wear.2009.11.010

E. Sharghi, A. Farzadi, Simulation of strain rate, material flow, and nugget shape during dissimilar friction stir welding of AA6061 aluminum alloy and Al-Mg2Si composite. J. Alloys Compd. 748, 953–960 (2018). https://doi.org/10.1016/j.jallcom.2018.03.145

M. Hourmand, S. Farahany, A.A. Sarhan et al., Investigating the electrical discharge machining (EDM) parameter effects on Al-Mg2Si metal matrix composite (MMC) for high material removal rate (MRR) and less EWR–RSM approach. Int. J. Adv. Manuf. Technol. 77, 831–838 (2015). https://doi.org/10.1007/s00170-014-6491-2

E. Safary, R. Taghiabadi, M.H. Ghoncheh, Mechanical properties of Al-15Mg2Si composites prepared under different solidification cooling rates. Int. J. Miner. Metall. Mater. 29, 1249–1260 (2022). https://doi.org/10.1007/s12613-020-2244-4

BS1490. Specification for aluminium and aluminium alloy ingots and castings for general engineering purposes. British Standard Institution, London, UK (1988)

ASTM G99, 2017 Edition, January 1, 2017—Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus

J. Yao, X. Shi, W. Zhai et al., Influence of lubricants on wear and self-lubricating mechanisms of Ni3Al matrix self-lubricating composites. J. Mater. Eng. Perform. 24, 280–295 (2015). https://doi.org/10.1007/s11665-014-1266-3

H. Ghandvar, M.A. Jabbar, S.S.R. Koloor et al., Role B4C addition on microstructure, mechanical, and Wear characteristics of Al-20% Mg2Si hybrid metal matrix composite. Appl. Sci. 11, 3047 (2021). https://doi.org/10.3390/app11073047

Y. He, H. Xu, B. Jiang et al., Microstructure, mechanical and tribological properties of (APC+ B4C)/Al hybrid composites prepared by hydrothermal carbonized deposition on chips. J. Alloys Compd. 888, 161578 (2021). https://doi.org/10.1016/j.jallcom.2021.161578

V. Kavimani, K.S. Prakash, T. Thankachan, Surface characterization and specific wear rate prediction of r-GO/AZ31 composite under dry sliding wear condition. Surf. Interface 6, 143–153 (2017). https://doi.org/10.1016/j.surfin.2017.01.004

S.Q. Wang, M.X. Wei, Y.T. Zhao, Effects of the tribo-oxide and matrix on dry sliding wear characteristics and mechanisms of a cast steel. Wear 269, 424–434 (2010). https://doi.org/10.1016/j.wear.2010.04.028

W. Zhang, S. Yamashita, T. Kumazawa et al., Influence of surface roughness parameters and surface morphology on friction performance of ceramics. J. Ceram. Soc. Jpn.Jpn. 127, 837–842 (2019). https://doi.org/10.2109/jcersj2.19124

A.R. Riahi, A.T. Alpas, The role of tribo-layers on the sliding wear behavior of graphitic aluminum matrix composites. Wear 251, 1396–1407 (2001). https://doi.org/10.1016/S0043-1648(01)00796-7

Y.S. Mao, L. Wang, K.M. Chen et al., Tribo-layer and its role in dry sliding wear of Ti–6Al–4V alloy. Wear 297, 1032–1039 (2013). https://doi.org/10.1016/j.wear.2012.11.063

P. Wang, M. Hirose, Y. Suzuki et al., Carbon tribo-layer for super-low friction of amorphous carbon nitride coatings in inert gas environments. Surf. Coat. Technol. 221, 163–172 (2013). https://doi.org/10.1016/j.surfcoat.2013.01.045