High-Temperature Tribological Studies on Hot-Forged Al6061–TiB2 In Situ Composites

C. Venkategowda1, Harish Hanumanthappa2, C. Durga Prasad3, Bharath Kumar Shanmugam4, T. N. Sreenivasa2, Manmohan Kumar2
1Adjacent Bangalore Baptist Hospital
2Atria Institute of Technology, Adjacent Bangalore Baptist Hospital, Bengaluru, India
3Department of Mechanical Engineering, RV Institute of Technology and Management, Bengaluru, India
4Department of Mining Engineering, National Institute of Technology Karnataka, Mangalore, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hanumanthappa H, Vardhan H, Mandela GR, Kaza M, Sah R, Shanmugam BK (2020) A comparative study on a newly designed ball mill and the conventional ball mill performance with respect to the particle size distribution and recirculating load at the discharge end. Miner Eng 145:106091. https://doi.org/10.1016/j.mineng.2019.106091

Hanumanthappa H, Vardhan H, Mandela GR, Kaza M, Sah R, Shanmugam BK (2020) Estimation of grinding time for desired particle size distribution and for hematite liberation based on ore retention time in the mill. Min Metall Explor 37:481–492. https://doi.org/10.1007/s42461-019-00167-8

Hanumanthappa H, Vardhan H, Mandela GR, Kaza M, Sah R, Shanmugam BK (2020) Investigation on iron ore grinding based on particle size distribution and liberation. Trans Indian Inst Metals. https://doi.org/10.1007/s12666-020-01999-5

Harish H, Vardhan H, Mandela GR, Kaza M, Sah R, Sinha A, Shanmugam BK (2020) Investigation of iron ores based on the bond grindability test. AIP Conf Proc 2204:040006. https://doi.org/10.1063/1.5141579

Mohanraj GT, Rahman MR, Joladarashi S, Harish H, Shanmugam BK, Vardhan H, Rabbani SA (2021) Design and fabrication of optimized magnetic roller for permanent roll magnetic separator (PRMS): finite element method magnetics (FEMM) approach. Adv Powder Technol 32(2):546–564. https://doi.org/10.1016/j.apt.2021.01.003

Kumar BS, Harsha Vardhan M, Raj G, Kaza M, Sah R, Harish H (2020) The screening efficiency of linear vibrating screen—an experimental investigation. AIP Conf Proc 2204:040002. https://doi.org/10.1063/1.5141575

Shanmugam BK, Vardhan H, Raj MG, Kaza M, Sah R, Harish H (2019) Evaluation of a new vibrating screen for dry screening fine coal with different moisture contents. Int J Coal Prep Util. https://doi.org/10.1080/19392699.2019.1652170

Shanmugam BK, Vardhan H, Raj MG, Kaza M, Sah R, Harish H (2019) Screening performance of coal of different size fractions with variation in design and operational flexibilities of the new screening machine. Energy Sources A. https://doi.org/10.1080/19392699.2019.1652170

Shanmugam BK, Vardhan H, Raj MG, Kaza M, Sah R, Harish H (2020) Experimentation and statistical prediction of screening performance of coal with different moisture content in the vibrating screen. Int J Coal Prep Util. https://doi.org/10.1080/19392699.2020.1767606

Shanmugam BK, Vardhan H, Raj MG, Kaza M, Sah R, Harish H (2021) Artificial neural network modelling for predicting the screening efficiency of coal with varying moisture content in the vibrating screen. Int J Coal Prep Util. https://doi.org/10.1080/19392699.2021.1871610

Shanmugam BK, Vardhan H, Raj MG, Kaza M, Sah R, Harish H (2021) ANN modeling and residual analysis on screening efficiency of coal in vibrating screen. Int J Coal Prep Util. https://doi.org/10.1080/19392699.2021.1910505

Shanmugam BK, Vardhan H, Raj MG, Kaza M, Sah R, Harish H (2021) Regression modeling and residual analysis of screening coal in screening machine. Int J Coal Prep Util. https://doi.org/10.1080/19392699.2021.1923488

Vinayak RU, Iyengar NGR (1995) Transient thermal conduction in rectangular fiber reinforced composite laminates. Adv Compos Mater 4(4):327–342. https://doi.org/10.1163/156855195X00186

Singh S, Pal K (2017) Enhancement of mechanical and tribological properties of SiC- and CB-reinforced aluminium 7075 hybrid composites through friction stir processing. Adv Compos Mater. https://doi.org/10.1080/09243046.2017.1405596

Emelyanov AA, Furman EL, Conacova IP, Beloglazov VA (1993) Microstructure and mechanical properties of porous cast aluminium composite. Adv Compos Mater 3(1):1–5. https://doi.org/10.1163/156855193X00016

Kok M (2005) Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites. J Mater Process Technol 161(3):381–387. https://doi.org/10.1016/j.jmatprotec.2004.07.068

Durga Prasad C, Joladarashi S, Ramesh MR, Srinath MS, Channabasappa BH (2019) Effect of microwave heating on microstructure and elevated temperature adhesive wear behavior of HVOF deposited CoMoCrSi-Cr3C2 composite coating. Surf Coat Technol 374:291–304. https://doi.org/10.1016/j.surfcoat.2019.05.056

Ayar VS, Sutaria MP (2020) Development and characterization of in situ AlSi5Cu3/TiB2 composites. Int J Metalcast 14(1):59–68

Kumar TS, Nampoothiri J, Raghu R et al (2020) Development of wear mechanism map for Al–4Mg alloy/MgAl2O4 in situ composites. Trans Indian Inst Met 73:399–405. https://doi.org/10.1007/s12666-019-01853-3

Lee SH, Saito Y, Sakai T, Utsunomiya H (2002) Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding. Mater Sci Eng A 325(1–2):228–235. https://doi.org/10.1016/S0921-5093(01)01416-2

Zhang ZF, Zhang LC, Mai YW (1995) Wear of ceramic particle-reinforced metal-matrix composites. J Mater Sci 30:1961–1966. https://doi.org/10.1007/BF00353018Mojisola

Suresh S, Shenbaga Vinayaga Moorthi N (2013) Process development in stir casting and investigation on microstructures and wear behavior of TiB2 on Al6061 MMC. Procedia Eng 64:1183–1190. https://doi.org/10.1016/j.proeng.2013.09.197

Chauhan A, Thirumalai S, Kumar RV (2018) In-situ fabrication of TiO2-C core-shell particles for efficient solar photocatalysis. Mater Today Commun 17:371–379. https://doi.org/10.1016/j.mtcomm.2018.10.003

Hudson SW, Apelian D (2016) Inclusion detection in molten aluminum: current art and new avenues for in situ analysis. Int Metalcast 10:289–305. https://doi.org/10.1007/s40962-016-0030-x

Daniel BSS, Murthy VSR, Murty GS (1997) Metal-ceramic composites via in-situ methods. J Mater Process Technol 68(2):132–155. https://doi.org/10.1016/S0924-0136(96)00020-9

Gotman I, Koczak MJ, Shtessel E (1994) Fabrication of Al matrix in situ composites via self-propagating synthesis. Mater Sci Eng A 187(2):189–199. https://doi.org/10.1016/0921-5093(94)90347-6

Raghu R, Nampoothiri J, Kumar TS, Subramanian R (2019) Microstructure and mechanical properties of Al/ MgAl2O4 in situ composites synthesized by ultrasonic cavitation. Trans Indian Inst Met 72(1013–1021):18

Krishna NN, Sivaprasad K (2011) High temperature tensile properties of cryorolled Al-4wt%Cu-3wt%TiB2 in-situ composites. Trans Indian Inst Met 64:63. https://doi.org/10.1007/s12666-011-0012-x

Tan H, Wang S, Yu Y, Cheng J, Zhu S, Qiao Z, Yang J (2018) Friction and wear properties of Al-20Si-5Fe-2Ni-graphite solid-lubricating composite at elevated temperatures. Tribol Int 122:228–235. https://doi.org/10.1016/j.triboint.2018.02.037

Mengis L, Grimme C, Galetz MC (2019) High-temperature sliding wear behavior of an intermetallic γ–based TiAl alloy. Wear 426–427(Part A):341–347. https://doi.org/10.1016/j.wear.2018.11.025

Kumar S, Chakraborty M, Sarma VS, Murty BS (2008) Tensile and wear behaviour of in situ Al–7Si/TiB2 particulate composites. Wear 265:134–142. https://doi.org/10.1016/j.Wear.2007.09.007

Mathan Kumar N, Senthil Kumaran S, Kumaraswamidhas LA (2016) Wear behaviour of Al 2618 alloy reinforced with Si3N4, AlN and ZrB2 in situ composites at elevated temperatures. Alex Eng J 55(1):19–36. https://doi.org/10.1016/j.aej.2016.01.017

Ramesh CS, Pramod S, Keshavamurthy R (2011) A study on microstructure and mechanical properties of Al 6061–TiB2 in-situ composites. Mater Sci Eng A 528(12):4125–4132. https://doi.org/10.1016/j.msea.2011.02.024

Balaji VS, Kumaran S (2013) Synthesis and characterization of Ti/ (TiB + TiC) hybrid in-situ composites by spark plasma sintering. Trans Indian Inst Met 66:339–341. https://doi.org/10.1007/s12666-013-0266-6

Durga Prasad C, Jerri A, Ramesh MR (2020) Characterization and sliding wear behavior of iron-based metallic coating deposited by HVOF process on low carbon steel substrate. J Bio- Tribo-Corros 6:69. https://doi.org/10.1007/s40735-020-00366-7

Sharma P, Sharma S, Khanduja D (2015) A study on microstructure of aluminium matrix composites. J Asian Ceram Soc 3(3):240–244. https://doi.org/10.1016/j.jascer.2015.04.001

Ramesh CS, Ahamed A, Channabasappa BH, Keshavamurthy R (2018) Development of Al 6063–TiB2 in situ composites. Mater Today Process 5:11233

Balaji VS, Surendarnath S (2019) High-temperature wear behavior of spark-plasma-sintered titanium/(TiB + TiC) in situ composites. Trans Indian Inst Met 72:1669–1673. https://doi.org/10.1007/s12666-019-01622-2

Durga Prasad C, Joladarashi S, Ramesh MR, Srinath MS, Channabasappa BH (2018) Influence of microwave hybrid heating on the sliding wear behaviour of HVOF sprayed CoMoCrSi coating. Mater Res Express 5:086519. https://doi.org/10.1088/2053-1591/aad44e

Durga Prasad C, Joladarashi S, Ramesh MR, Srinath MS (2020) Microstructure and tribological resistance of flame sprayed CoMoCrSi/WC-CrC-Ni and CoMoCrSi/WC-12Co composite coatings remelted by microwave hybrid heating. J Bio Tribo-Corros 6:124. https://doi.org/10.1007/s40735-020-00421-3