High Space Efficiency Hybrid Nanogenerators for Effective Water Wave Energy Harvesting

Advanced Functional Materials - Tập 32 Số 18 - 2022
Chuguo Zhang1,2, Wei Yuan1,2, Baofeng Zhang1,2, Yang Ou1,2, Yuebo Liu1,3, Lixia He1,2, Jie Wang1,3,2, Zhong Lin Wang1,2,4
1Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
2College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
3Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
4School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA

Tóm tắt

Abstract

Water wave energy is a vital renewable‐energy resource, but it is less developed due to the characteristics of water wave with low and varying frequency. Herein, a bifilar‐pendulum coupled hybrid nanogenerator (BCHNG) module, which includes an electromagnetic generator (EMG), two piezoelectric nanogenerators (PENGs), and two multilayer‐structured triboelectric nanogenerators (TENGs), is incorporated into a vessel‐like platform for wave energy harvesting. The combination of the lightweight TENG and the heavy PENG and EMG can not only increase the ability of power take‐off to capture water wave energy, but also improve the space utilization rate of BCHNG module and facilitate the design of the floating wave energy collecting device. Furthermore, the BCHNG module can harvest the kinetic energy and gravitational potential energy of the water wave at the same time, which benefits from the two degrees of swing freedom of the bifilar‐pendulum. Importantly, thanks to the accurate geometric design and the reasonable utilization of space, the BCHNG module achieves a high peak power density of 358.5 W m−3. The findings not only provide a novel method for the large‐scale development of blue energy, but also offer an opportunity for the development of self‐powered marine resources.

Từ khóa


Tài liệu tham khảo

10.1038/263223a0

10.1039/D0EE01258K

10.1021/acsnano.6b01569

10.1016/j.renene.2016.12.026

10.1016/j.rser.2019.02.021

10.1016/j.enconman.2018.12.074

10.1002/adfm.202001150

10.1039/C9EE03258D

10.1126/science.352.6286.637

10.1016/j.renene.2021.07.042

10.3390/en9070506

10.1007/s40544-020-0390-3

10.1039/D0EE02777D

10.1021/acsenergylett.1c00368

10.1038/s41467-020-19367-8

10.1126/scirobotics.aat2516

10.1038/s41467-021-23207-8

10.1038/s41893-020-00628-9

10.1021/acsnano.0c01827

10.1038/s41928-020-0428-6

10.1126/sciadv.abe2943

10.1038/s41467-021-21890-1

10.1021/acs.chemrev.9b00821

10.1016/j.matt.2020.01.022

10.1038/nenergy.2016.138

10.1002/aenm.202003616

10.1016/j.nanoen.2018.12.054

Liang X., 2020, Adv. Energy Mater., 10, 20026123

10.1021/acsnano.1c02790

10.1021/acsnano.5b00534

10.1021/nn5012732

10.1016/j.nanoen.2014.07.006

10.1021/nn500694y

10.1016/j.nanoen.2018.02.042

10.1016/j.nanoen.2018.03.062

10.1002/aenm.201802892

Wu Z., 2019, ACS Nano, 13, 2349

10.1016/j.joule.2021.04.016

10.1002/adfm.201502318

10.1038/ncomms12744

10.1016/j.nanoen.2020.105625

10.1038/s41467-020-17891-1

10.1016/j.nanoen.2019.01.033

10.1038/s41467-019-09464-8

10.1002/aenm.202100050

10.1002/adma.201402491

10.1039/d1ee02549j

10.1021/acsenergylett.1c01092