High‐Performance Supported Iridium Oxohydroxide Water Oxidation Electrocatalysts

Wiley - Tập 10 Số 9 - Trang 1943-1957 - 2017
Cyriac Massué1,2, Verena Streibel2, Xing Huang2, J. Noack2, Andrey Tarasov2, Sébastien Cap2, Robert Schlögl1,2
1Department of Heterogenous Reactions Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim-an-der-Ruhr Germany
2Department of Inorganic Chemistry Fritz Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Germany

Tóm tắt

AbstractThe synthesis of a highly active and yet stable electrocatalyst for the anodic oxygen evolution reaction (OER) remains a major challenge for acidic water splitting on an industrial scale. To address this challenge, we obtained an outstanding high‐performance OER catalyst by loading Ir on conductive antimony‐doped tin oxide (ATO)‐nanoparticles by a microwave (MW)‐assisted hydrothermal route. The obtained Ir phase was identified by using XRD as amorphous (XRD‐amorphous), highly hydrated IrIII/IV oxohydroxide. To identify chemical and structural features responsible for the high activity and exceptional stability under acidic OER conditions with loadings as low as 20 μgIr cm−2, we used stepwise thermal treatment to gradually alter the XRD‐amorphous Ir phase by dehydroxylation and crystallization of IrO2. This resulted in dramatic depletion of OER performance, indicating that the outstanding electrocatalytic properties of the MW‐produced IrIII/IV oxohydroxide are prominently linked to the nature of the produced Ir phase. This finding is in contrast with the often reported stable but poor OER performance of crystalline IrO2‐based compounds produced through more classical calcination routes. Our investigation demonstrates the immense potential of Ir oxohydroxide‐based OER electrocatalysts for stable high‐current water electrolysis under acidic conditions.

Từ khóa


Tài liệu tham khảo

10.1002/cssc.200900183

10.1021/cr100246c

10.1038/s41570-016-0003

10.1016/0022-0728(84)80187-4

10.1021/ja510442p

10.1021/cs3003098

10.1002/celc.201500268

10.1149/1.1836463

10.1103/PhysRevB.51.13972

10.1021/jp001932s

10.1023/A:1025697322395

10.1063/1.479151

10.1016/0013-4686(75)90067-5

10.1039/C5TA02942B

10.1039/C4CP04791E

10.1021/jz501061n

10.1002/aenm.201601275

10.1016/j.cattod.2015.08.014

10.1002/cctc.201600423

10.1016/0022-0728(95)03950-L

10.1016/S0022-0728(02)01055-0

10.1016/j.matchemphys.2005.04.039

10.1016/j.electacta.2005.09.004

10.1016/j.electacta.2009.11.018

10.1016/j.ijhydene.2007.02.013

10.1016/j.jelechem.2006.02.004

10.1007/BF00249891

10.1002/anie.201306588

10.1002/ange.201306588

10.1016/j.ijhydene.2013.01.151

10.1021/jacs.5b07788

10.1149/2.0411409jes

10.1038/282281a0

10.1016/S0022-0728(79)80036-4

10.1007/BF01007809

10.1002/cssc.201402988

10.1016/j.elecom.2014.08.027

10.1002/anie.201507626

10.1002/ange.201507626

10.1103/PhysRevLett.112.117601

10.1021/acscatal.5b01281

10.1103/PhysRevB.22.4680

10.1039/c2nr11804a

10.1002/sia.5895

10.1039/C5CP06997A

10.1149/06916.0087ecst

10.1016/0040-6090(93)90239-L

10.1016/j.matlet.2005.01.070

10.1016/j.materresbull.2003.08.009

10.1016/j.jcat.2008.06.007

10.1007/BF01034045

10.1039/b504364f

10.1021/cm9606282

10.1149/1.1393478

10.1134/S0036023611110210

10.1021/jp212275q

10.1021/ja407115p

10.1039/c3cp55527e

10.1023/A:1016656408728

J. F. Moulder J. Chastain R. C. King Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification interpretation of XPS data PerkinElmer Eden Prairie

10.1002/anie.201402311

10.1002/ange.201402311

10.1063/1.435347

10.1149/2.0181611jes

10.1016/0038-1098(89)90942-3

10.1063/1.1385573

10.1021/cm0490470

10.1021/ja4048762

10.1039/C3CP54878C

10.1116/1.4923227

10.1016/j.chemphys.2004.11.014

10.1016/S0167-577X(03)00352-5

C. Massué X. Huang A. Tarasov C. Ranjan S. Cap R. Schlögl ChemSusChem2017 10 DOI:10.1002/cssc.201601864.

10.1002/j.1538-7305.1958.tb03883.x