High Performance Supercapacitors from Hierarchical Porous Carbon Aerogels Based on Sliced Bread

Chinese Journal of Chemistry - Tập 35 Số 5 - Trang 699-706 - 2017
Pin Hao1, Guanwei Cui1, Xifeng Shi1, Junfeng Xie1, Xinyuan Xia1, Yuanhua Sang2, C.P. Wong3, Hong Liu2, Bo Tang1
1College of Chemistry, Chemical Engineering and Materials Science, Institute of Materials and Clean Energy, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China
2State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
3School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30032, The United States

Tóm tắt

Supercapacitor electrodes with porous structure based on renewable, eco‐friendly and cost‐effective materials have caused extensive concern in energy storage fields. Sliced bread, the common food ingredient, mainly containing glucose polymers, can be a promising candidate to fabricate porous supercapacitor electrodes. Highly porous carbon aerogels by using sliced bread as the raw material were synthesized through a carefully controlled aerogel carbonization‐activation process. Interestingly, the specific surface area and the pore size distribution of the porous carbon were controlled by the activation temperature, which result in the varied performance of the carbon aerogel as a supercapacitor. Electrochemical investigation measurements revealed that the hierarchical porous carbon aerogel shows an excellent capacitor behavior for construction of a symmetric supercapacitor, which demonstrated a high specific capacitance of 229 F•g−1 at discharge current of 0.2 A•g−1. In addition, the fabricated supercapacitor displayed excellent capacitance retention of 95.5% over 5000 cycles.

Từ khóa


Tài liệu tham khảo

10.1016/j.enconman.2010.06.031

10.1039/C6NR05385H

10.1038/ncomms9503

10.1016/j.jnoncrysol.2007.07.024

10.1039/C4TA00538D

10.1021/nl062263i

10.1002/cjoc.201600217

10.1039/C5NR04421A

10.1002/cjoc.201500595

10.1002/cjoc.201500076

10.1002/cjoc.200690212

10.1039/C4NR03574G

10.1021/nn4016345

10.1021/am503783t

10.1039/c1cc15348j

10.1016/j.jpowsour.2011.02.019

10.1023/A:1009629423578

10.1002/cjoc.201400740

10.1016/j.jpowsour.2005.09.045

10.1021/la903947c

10.1016/j.carbon.2016.03.009

10.1002/smll.201401192

10.1016/S0008-6223(02)00243-9

10.1016/S0022-3093(03)00325-9

10.1021/acsami.5b01660

10.1016/j.carbon.2010.07.049

10.1002/cssc.201000376

10.1021/jp067009t

10.1016/j.jpowsour.2012.10.022

10.1016/j.nanoen.2015.02.035

10.1016/j.carbon.2007.01.024

10.1149/1.1409546

10.1021/nl061702a

10.1039/C2NR32040A

10.1039/b618139m

10.1016/j.jpowsour.2005.12.023

10.1016/j.carbon.2010.01.014

10.1039/c0ee00683a

10.1038/srep01119

10.1016/j.carbon.2012.09.022

10.1016/j.nanoen.2012.05.012

10.1002/cssc.201301408

10.1016/j.jelechem.2013.11.020

10.1002/adma.200501905