High-Performance Solid-State Supercapacitors Fabricated by Pencil Drawing and Polypyrrole Depositing on Paper Substrate

Nano-Micro Letters - Tập 7 - Trang 276-281 - 2015
Jiayou Tao1,2, Wenzhen Ma1, Nishuang Liu1, Xiaoliang Ren1, Yuling Shi1, Jun Su1, Yihua Gao1
1Wuhan National Laboratory for Optoelectronics (WNLO) & School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology, Wuhan, People’s Republic of China
2School of Physics and Electronics, Hunan Institute of Science and Technology, Yueyang, People’s Republic of China

Tóm tắt

A solid-state powerful supercapacitor (SC) is fabricated with a substrate of Xerox paper. Its current collector based on a foldable electronic circuit is developed by simply pencil drawing. Thin graphite sheets on paper provide effective channels for electron transmission with a low resistance of 95 Ω sq−1. The conductive organic material of polypyrrole coated on thin graphite sheets acts as the electrode material of the device. The as-fabricated SC exhibits a high specific capacitance of 52.9 F cm−3 at a scan rate of 1 mV s−1. An energy storage unit fabricated by three full-charged series SCs can drive a commercial light-emitting diode robustly. This work demonstrated a simple, versatile and cost-effective method for paper-based devices.

Tài liệu tham khảo

A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005). doi:10.1038/nmat1368 P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). doi:10.1038/nmat2297 L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009). doi:10.1039/b813846j B.E. Conway, Electrochemical supercapacitor: scientific fundamentals and technological applications (Kluwer Academic/Plenum Publishers, New York, 1999). doi:10.1007/978-1-4757-3058-6 M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4269 (2004). doi:10.1021/cr020730k W. Chen, R.B. Rakhi, L. Hu, X. Xie, Y. Cui, H.N. Alshareef, High-performance nanostructured supercapacitors on a sponge. Nano Lett. 11(12), 5165–5172 (2011). doi:10.1021/nl2023433 M.C. Barr, J.A. Rowehl, R.R. Lunt, J. Xu, A. Wang, C.M. Boyce, S.G. Im, V. Bulovic, K.K. Gleason, Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv. Mater. 23(31), 3499–3505 (2011). doi:10.1002/adma.201101263 J. Kawahara, P.A. Ersman, K. Katoh, M. Berggren, Fast-switching printed organic electrochemical transistors including electronic vias through plastic and paper substrates. IEEE T. Electron Dev. 60(6), 2052–2056 (2013). doi:10.1109/TED.2013.2258923 B. Yoon, D.Y. Ham, O. Yarimaga, H. An, C.W. Lee, J.M. Kim, Inkjet printing of conjugated polymer precursors on paper substrates for colorimetric sensing and flexible electrothermochromic display. Adv. Mater. 23(46), 5492–5497 (2011). doi:10.1002/adma.201103471 G.Y. Zheng, L.B. Hu, H. Wu, X. Xie, Y. Cui, Paper supercapacitors by a solvent-free drawing method. Energy Environ. Sci. 4(9), 3368–3373 (2011). doi:10.1039/c1ee01853a L.B. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.F. Cui, Y. Cui, Highly conductive paper for energy-storage devices. PNAS 106(51), 21490–21494 (2009). doi:10.1073/pnas.0908858106 L. Hu, H. Wu, F. La Mantia, Y. Yang, Y. Cui, Thin, flexible secondary Li-ion paper batteries. ACS Nano 4(10), 5843–5848 (2010). doi:10.1021/nn1018158 E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6), 937–950 (2001). doi:10.1016/S0008-6223(00)00183-4 D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 5(12), 987–994 (2006). doi:10.1038/nmat1782 K.H. An, W.S. Kim, Y.S. Park, J.-M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv. Funct. Mater. 11(5), 387–392 (2001). doi:10.1002/1616-3028(200110)11:5<387:AID-ADFM387>3.0.CO;2-G V.L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R.J. Linhardt, O. Nalamasu, P.M. Ajayan, Flexible energy storage devices based on nanocomposite paper. PNAS 104(34), 13574–13577 (2007). doi:10.1073/pnas.0706508104 M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9(5), 1872–1876 (2009). doi:10.1021/nl8038579 Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). doi:10.1002/adma.201001068 H.J. Choi, S.M. Jung, J.M. Seo, D.W. Chang, L.M. Dai, J.B. Baek, Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1(4), 534–551 (2012). doi:10.1016/j.nanoen.2012.05.001 K. Zhang, L.L. Zhang, X.S. Zhao, J.S. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22(4), 1392–1401 (2010). doi:10.1021/cm902876u Q. Wu, Y.X. Xu, Z.Y. Yao, A.R. Liu, G.Q. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4(4), 1963–1970 (2010). doi:10.1021/nn1000035 D.W. Wang, F. Li, J.P. Zhao, W.C. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu, H.M. Cheng, Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3(7), 1745–1752 (2009). doi:10.1021/nn900297m Y. Wang, Z.Q. Shi, Y. Huang, Y.F. Ma, C.Y. Wang, M.M. Chen, Y.S. Chen, Supercapacitor devices based on graphene materials. J. Phys. C 113(30), 13103–13107 (2009). doi:10.1021/jp902214f Y. Huang, Y. Huang, W.J. Meng, M.S. Zhu, H.T. Xue, C. Lee, C.Y. Zhi, Enhanced tolerance to stretch-induced performance degradation of stretchable MnO2-based supercapacitors. ACS Appl. Mater. Inter. 7, 2569–2574 (2015). doi:10.1021/am507588p Y. Huang, J.Y. Tao, W.J. Meng, M.S. Zhu, Y. Huang, Y.Q. Fu, Y.H. Gao, C.Y. Zhi, Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 11, 518–525 (2015). doi:10.1016/j.nanoen.2014.10.031 R.A. Davoglio, S.R. Biaggio, N. Bocchi, R.C. Rocha, Flexible and high surface area composites of carbon fiber, polypyrrole, and poly(dmct) for supercapacitor electrodes. Electrochim. Acta 93, 93–100 (2013). doi:10.1016/j.electacta.2013.01.062 X.H. Lu, G.M. Wang, T. Zhai, M.H. Yu, S.L. Xie, Y.C. Ling, C.L. Liang, Y.X. Tong, Y. Li, Stabilized tin nanowire arrays for high-performance and flexible supercapacitors. Nano Lett. 12(10), 5376–5381 (2012). doi:10.1021/nl302761z A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. (2006). doi:10.1103/PhysRevLett.97.187401 L.Y. Yuan, B. Yao, B. Hu, K.F. Huo, W. Chen, J. Zhou, Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ. Sci. 6(2), 470–476 (2013). doi:10.1039/c2ee23977a