High-Performance Piezoelectric Energy Harvesters and Their Applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bowen, 2014, Piezoelectric and ferroelectric materials and structures for energy harvesting applications, Energy Environ. Sci., 7, 25, 10.1039/C3EE42454E
Khan, 2016, Piezoelectric thin films: an integrated review of transducers and energy harvesting, Smart Mater. Struct., 25, 053002, 10.1088/0964-1726/25/5/053002
Ramadan, 2014, A review of piezoelectric polymers as functional materials for electromechanical transducers, Smart Mater. Struct., 23, 033001, 10.1088/0964-1726/23/3/033001
Wang, 2012, From nanogenerators to piezotronics—a decade-long study of ZnO nanostructures, MRS Bull., 37, 814, 10.1557/mrs.2012.186
Wang, 2012, Progress in nanogenerators for portable electronics, Mater. Today, 15, 532, 10.1016/S1369-7021(13)70011-7
Cook-Chennault, 2008, Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems, Smart Mater. Struct., 17, 043001, 10.1088/0964-1726/17/4/043001
Briscoe, 2015, Piezoelectric nanogenerators—a review of nanostructured piezoelectric energy harvesters, Nano Energy, 14, 15, 10.1016/j.nanoen.2014.11.059
Wang, 2012, Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems, Angew. Chem. Int. Ed., 51, 11700, 10.1002/anie.201201656
Radousky, 2012, Energy harvesting: an integrated view of materials, devices and applications, Nanotechnology, 23, 502001, 10.1088/0957-4484/23/50/502001
Fan, 2016, Flexible nanogenerators for energy harvesting and self-powered electronics, Adv. Mater., 28, 4283, 10.1002/adma.201504299
Daqaq, 2014, On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion, Appl. Mech. Rev., 66, 040801, 10.1115/1.4026278
Harne, 2013, A review of the recent research on vibration energy harvesting via bistable systems, Smart Mater. Struct., 22, 023001, 10.1088/0964-1726/22/2/023001
Tang, 2010, Toward broadband vibration-based energy harvesting, J. Intell. Mater. Syst. Struct., 21, 1867, 10.1177/1045389X10390249
Guyomar, 2011, Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation, Micromachines, 2, 274, 10.3390/mi2020274
Dicken, 2012, Power-extraction circuits for piezoelectric energy harvesters in miniature and low-power applications, IEEE Trans. Power Electron., 27, 4514, 10.1109/TPEL.2012.2192291
Szarka, 2012, Review of power conditioning for kinetic energy harvesting systems, IEEE Trans. Power Electron., 27, 803, 10.1109/TPEL.2011.2161675
Dagdeviren, 2017, Energy harvesting from the animal/human body for self-powered electronics, Annu. Rev. Biomed. Eng., 19, 85, 10.1146/annurev-bioeng-071516-044517
Mitcheson, P.D., Yeatman, E.M., Rao, G.K., Holmes, A.S., and Green, T.C. (2008). Energy harvesting from human and machine motion for wireless electronic devices. Proceedings of the IEEE, 96(9): p. 1457–1486.
Siddique, 2015, A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms, Energ. Convers. Manag., 106, 728, 10.1016/j.enconman.2015.09.071
Hudak, 2008, Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion, J. Appl. Physiol., 103, 5
Cepnik, 2013, Review on electrodynamic energy harvesters—a classification approach, Micromachines, 4, 168, 10.3390/mi4020168
Selvan, 2016, Micro-scale energy harvesting devices: review of methodological performances in the last decade, Renew. Sustain. Energ. Rev., 54, 1035, 10.1016/j.rser.2015.10.046
Shaikh, 2016, Energy harvesting in wireless sensor networks: a comprehensive review, Renew. Sustain. Energ. Rev., 55, 1041, 10.1016/j.rser.2015.11.010
Caliò, 2014, Piezoelectric energy harvesting solutions, Sensors (Basel), 14, 4755, 10.3390/s140304755
Uchino, 2010, The development of piezoelectric materials and the new perspective, 1
Zhang, 2015, Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers–A review, Prog. Mater. Sci., 68, 1, 10.1016/j.pmatsci.2014.10.002
Yang, 2016, Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting, Energ. Convers. Manag., 122, 321, 10.1016/j.enconman.2016.05.085
Yuhuan, 1991
Pellegrini, 2013, Bistable vibration energy harvesters: a review, J. Intell. Mater. Syst. Struct., 24, 1303, 10.1177/1045389X12444940
Wei, 2017, A comprehensive review on vibration energy harvesting: Modelling and realization, Renew. Sustain. Energ. Rev., 74, 1, 10.1016/j.rser.2017.01.073
Cottone, 2009, Nonlinear energy harvesting, Phys. Rev. Lett., 102, 080601, 10.1103/PhysRevLett.102.080601
Erturk, 2009, A piezomagnetoelastic structure for broadband vibration energy harvesting, Appl. Phys. Lett., 94, 254102, 10.1063/1.3159815
Zhou, 2013, Enhanced broadband piezoelectric energy harvesting using rotatable magnets, Appl. Phys. Lett., 102, 173901, 10.1063/1.4803445
Stanton, 2010, Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator, Phys. Nonlinear Phenom., 239, 640, 10.1016/j.physd.2010.01.019
Sebald, 2011, Experimental Duffing oscillator for broadband piezoelectric energy harvesting, Smart Mater. Struct., 20, 102001, 10.1088/0964-1726/20/10/102001
Tang, 2012, A nonlinear piezoelectric energy harvester with magnetic oscillator, Appl. Phys. Lett., 101, 094102, 10.1063/1.4748794
Yang, 2014, High-efficiency compressive-mode energy harvester enhanced by a multi-stage force amplification mechanism, Energ. Convers. Manag., 88, 829, 10.1016/j.enconman.2014.09.026
Yang, 2015, Theoretical and experimental investigation of a nonlinear compressive-mode energy harvester with high power output under weak excitations, Smart Mater. Struct., 24, 025028, 10.1088/0964-1726/24/2/025028
Stanton, 2009, Reversible hysteresis for broadband magnetopiezoelastic energy harvesting, Appl. Phys. Lett., 95, 174103, 10.1063/1.3253710
Yang, 2016, Reversible nonlinear energy harvester tuned by tilting and enhanced by nonlinear circuits, IEEE/ASME Trans. Mechatronics, 21, 2174, 10.1109/TMECH.2016.2530619
Erturk, 2011, Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling, J. Sound Vib., 330, 2339, 10.1016/j.jsv.2010.11.018
Zhou, 2014, Broadband tristable energy harvester: modeling and experiment verification, Appl. Energy, 133, 33, 10.1016/j.apenergy.2014.07.077
Zhou, 2014, Exploitation of a tristable nonlinear oscillator for improving broadband vibration energy harvesting, Eur. Phys. J. Appl. Phys., 67, 10.1051/epjap/2014140190
Kim, 2014, A multi-stable energy harvester: dynamic modeling and bifurcation analysis, J. Sound Vib., 333, 5525, 10.1016/j.jsv.2014.05.054
Kim, 2015, Dynamic and energetic characteristics of a tri-stable magnetopiezoelastic energy harvester, Mech. Mach. Theor., 94, 41, 10.1016/j.mechmachtheory.2015.08.002
Zhou, 2016, Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters, Nonlinear Dyn., 86, 1599, 10.1007/s11071-016-2979-7
Stanton, 2012, Harmonic balance analysis of the bistable piezoelectric inertial generator, J. Sound Vib., 331, 3617, 10.1016/j.jsv.2012.03.012
Harne, 2014, On the fundamental and superharmonic effects in bistable energy harvesting, J. Intell. Mater. Syst. Struct., 25, 937, 10.1177/1045389X13502856
Masana, 2012, Energy harvesting in the super-harmonic frequency region of a twin-well oscillator, J. Appl. Physiol., 111, 044501, 10.1063/1.3684579
Zhou, 2016, Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement, J. Sound Vib., 373, 223, 10.1016/j.jsv.2016.03.017
Panyam, 2017, Characterizing the effective bandwidth of tri-stable energy harvesters, J. Sound Vib., 386, 336, 10.1016/j.jsv.2016.09.022
Cao, 2015, Chaos in the fractionally damped broadband piezoelectric energy generator, Nonlinear Dyn., 80, 1705, 10.1007/s11071-014-1320-6
Stanton, 2012, Melnikov theoretic methods for characterizing the dynamics of the bistable piezoelectric inertial generator in complex spectral environments, Phys. Nonlinear Phenom., 241, 711, 10.1016/j.physd.2011.12.010
Oumbé Tékam, 2015, Analysis of tristable energy harvesting system having fractional order viscoelastic material, Chaos, 25, 013112, 10.1063/1.4905276
Litak, 2010, Magnetopiezoelastic energy harvesting driven by random excitations, Appl. Phys. Lett., 96, 214103, 10.1063/1.3436553
Litak, 2011, Energy harvesting in a magnetopiezoelastic system driven by random excitations with uniform and Gaussian distributions, J. Theor. Appl. Mech., 49, 757
Cottone, 2012, Piezoelectric buckled beams for random vibration energy harvesting, Smart Mater. Struct., 21, 035021, 10.1088/0964-1726/21/3/035021
Daqaq, 2011, Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise, J. Sound Vib., 330, 2554, 10.1016/j.jsv.2010.12.005
He, 2014, Influence of potential function asymmetries on the performance of nonlinear energy harvesters under white noise, J. Sound Vib., 333, 3479, 10.1016/j.jsv.2014.03.034
Zhao, 2013, On the stochastic excitation of monostable and bistable electroelastic power generators: relative advantages and tradeoffs in a physical system, Appl. Phys. Lett., 102, 103902, 10.1063/1.4795296
Haitao, 2015, Dynamics and coherence resonance of tri-stable energy harvesting system, Smart Mater. Struct., 25, 015001, 10.1088/0964-1726/25/1/015001
Su, 2013, Design and development of a broadband magnet-induced dual-cantilever piezoelectric energy harvester, J. Intell. Mater. Syst. Struct., 25, 430, 10.1177/1045389X13498315
Su, 2014, Design and development of a novel bi-directional piezoelectric energy harvester, Smart Mater. Struct., 23, 095012, 10.1088/0964-1726/23/9/095012
Arrieta, 2010, A piezoelectric bistable plate for nonlinear broadband energy harvesting, Appl. Phys. Lett., 97, 104102, 10.1063/1.3487780
Leadenham, 2014, M-shaped asymmetric nonlinear oscillator for broadband vibration energy harvesting: harmonic balance analysis and experimental validation, J. Sound Vib., 333, 6209, 10.1016/j.jsv.2014.06.046
Arrieta, 2009, Nonlinear dynamic response and modeling of a bi-stable composite plate for applications to adaptive structures, Nonlinear Dyn., 58, 259, 10.1007/s11071-009-9476-1
Betts, 2012, Optimal configurations of bistable piezo-composites for energy harvesting, Appl. Phys. Lett., 100, 114104, 10.1063/1.3693523
Betts, 2013, Nonlinear dynamics of a bistable piezoelectric-composite energy harvester for broadband application, Eur. Phys. J. Spec. Top., 222, 1553, 10.1140/epjst/e2013-01944-6
Zhou, 2015, Impact-induced high-energy orbits of nonlinear energy harvesters, Appl. Phys. Lett., 106, 093901, 10.1063/1.4913606
Mallick, 2016, Surfing the high energy output branch of nonlinear energy harvesters, Phys. Rev. Lett., 117, 197701, 10.1103/PhysRevLett.117.197701
Lan, 2017, Obtaining high-energy responses of nonlinear piezoelectric energy harvester by voltage impulse perturbations, Eur. Phys. J. Appl. Phys., 79, 20902, 10.1051/epjap/2017170051
Haji Hosseinloo, 2017, Robust and adaptive control of coexisting attractors in nonlinear vibratory energy harvesters, J. Vib. Control
Roundy, 2005, Improving power output for vibration-based energy scavengers, IEEE Pervas. Comput., 4, 28, 10.1109/MPRV.2005.14
Baker, J., Roundy, S., and Wright, P. (2005). Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks. in Proc. 3rd Int. Energy Conversion Engineering Conf. (San Francisco, CA).
Dietl, 2010, Beam shape optimization for power harvesting, J. Intell. Mater. Syst. Struct., 21, 633, 10.1177/1045389X10365094
Goldschmidtboeing, 2008, Characterization of different beam shapes for piezoelectric energy harvesting, J. Micromech. Microeng., 18, 104013, 10.1088/0960-1317/18/10/104013
Ben Ayed, 2014, Design and performance of variable-shaped piezoelectric energy harvesters, J. Intell. Mater. Syst. Struct., 25, 174, 10.1177/1045389X13489365
Park, 2012, Design optimization of piezoelectric energy harvester subject to tip excitation, J. Mech. Sci. Technol., 26, 137, 10.1007/s12206-011-0910-1
Paquin, 2010, Improving the performance of a piezoelectric energy harvester using a variable thickness beam, Smart Mater. Struct., 19, 105020, 10.1088/0964-1726/19/10/105020
Rupp, 2009, Design of piezoelectric energy harvesting systems: a topology optimization approach based on multilayer plates and shells, J. Intell. Mater. Syst. Struct., 20, 1923, 10.1177/1045389X09341200
Chen, 2010, A level set approach for optimal design of smart energy harvesters, Comput. Methods Appl. Mech. Eng., 199, 2532, 10.1016/j.cma.2010.04.008
Nanthakumar, 2016, Topology optimization of piezoelectric nanostructures, J. Mech. Phys. Solid., 94, 316, 10.1016/j.jmps.2016.03.027
Wein, 2013, Topology optimization of a cantilevered piezoelectric energy harvester using stress norm constraints, Struct. Multidiscip. O., 48, 173, 10.1007/s00158-013-0889-6
Takezawa, 2014, Design methodology of piezoelectric energy-harvesting skin using topology optimization, Struct. Multidiscip. O., 49, 281, 10.1007/s00158-013-0974-x
Nakasone, 2009, Design of piezoelectric energy harvesting devices and laminate structures by applying topology optimization, Proc. SPIE, 10.1117/12.816467
Zheng, 2009, Topology optimization of energy harvesting devices using piezoelectric materials, Struct. Multidiscip. O., 38, 17, 10.1007/s00158-008-0265-0
Jia, 2016, Power optimization by mass tuning for MEMS piezoelectric cantilever vibration energy harvesting, J. Microelectromech. Syst., 25, 108, 10.1109/JMEMS.2015.2496346
Yang, 2017, Introducing arc-shaped piezoelectric elements into energy harvesters, Energ. Convers. Manag., 148, 260, 10.1016/j.enconman.2017.05.073
Stewart, 2012, Charge redistribution in piezoelectric energy harvesters, Appl. Phys. Lett., 100, 073901, 10.1063/1.3685701
Du, 2017, A. new electrode design method in piezoelectric vibration energy harvesters to maximize output power, Sensor. Actuator. Phys., 263, 693, 10.1016/j.sna.2017.06.026
Erturk, 2009, Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams, J. Vib. Acoust., 131, 011010, 10.1115/1.2981094
Cho, 2005, Optimization of electromechanical coupling for a thin-film PZT membrane: II. Experiment, J. Micromech. Microeng., 15, 1804, 10.1088/0960-1317/15/10/003
Yang, Z.B. and J. Zu. Charge Redistribution in Flextensional Piezoelectric Energy Harvesters. Trans Tech.
Kim, 2015, Effect of electrode configurations on piezoelectric vibration energy harvesting performance, Smart Mater. Struct., 24, 045026, 10.1088/0964-1726/24/4/045026
Zhao, 2012, Investigation of a d15 mode PZT-51 piezoelectric energy harvester with a series connection structure, Smart Mater. Struct., 21, 105006, 10.1088/0964-1726/21/10/105006
Malakooti, 2015, Piezoelectric energy harvesting through shear mode operation, Smart Mater. Struct., 24, 055005, 10.1088/0964-1726/24/5/055005
Kulkarni, 2014, A shear-mode energy harvesting device based on torsional stresses, IEEE/ASME Trans. Mechatronics, 19, 801, 10.1109/TMECH.2013.2259635
Ren, 2010, Piezoelectric energy harvesting using shear mode 0.71 Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystal cantilever, Appl. Phys. Lett., 96, 083502, 10.1063/1.3327330
Aladwani, 2013, Single degree of freedom shear-mode piezoelectric energy harvester, J. Vib. Acoust., 135, 051011, 10.1115/1.4023950
Xu, 2012, Cantilever driving low frequency piezoelectric energy harvester using single crystal material 0.71 Pb(Mg1/3Nb2/3)O3-0.29PbTiO3, Appl. Phys. Lett., 101, 033502, 10.1063/1.4737170
Zou, 2017, A broadband compressive-mode vibration energy harvester enhanced by magnetic force intervention approach, Appl. Phys. Lett., 110, 163904, 10.1063/1.4981256
Wu, 2016, A barbell-shaped high-temperature piezoelectric vibration energy harvester based on BiScO3-PbTiO3 ceramic, Appl. Phys. Lett., 109, 173901, 10.1063/1.4966125
Kim, 2004, Energy harvesting using a Piezoelectric “Cymbal” Transducer in dynamic environment, Jpn. J. Appl. Phys., 43, 6178, 10.1143/JJAP.43.6178
Tufekcioglu, 2014, A flextensional piezo-composite structure for energy harvesting applications, Sensor. Actuator. Phys., 216, 355, 10.1016/j.sna.2014.06.001
Lee, 2015, Piezoelectric energy harvesting in internal fluid flow, Sensors (Basel), 15, 26039, 10.3390/s151026039
Yang, 2017, Modeling and parametric study of a force-amplified compressive-mode piezoelectric energy harvester, J. Intell. Mater. Syst. Struct., 28, 357, 10.1177/1045389X16642536
Xu, 2013, Energy harvesting using a PZT ceramic multilayer stack, Smart Mater. Struct., 22, 065015, 10.1088/0964-1726/22/6/065015
Moure, 2016, Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting, Energ. Convers. Manag., 112, 246, 10.1016/j.enconman.2016.01.030
Jiang, 2014, Piezoelectric energy harvesting from traffic-induced pavement vibrations, J. Renew. Sustain. Energ., 6, 043110, 10.1063/1.4891169
Lee, 2014, Energy harvesting of piezoelectric stack actuator from a shock event, J. Vib. Acoust., 136, 011016, 10.1115/1.4025878
Wang, 2016, A stack-based flex-compressive piezoelectric energy harvesting cell for large quasi-static loads, Smart Mater. Struct., 25, 055005, 10.1088/0964-1726/25/5/055005
Xu, 2011, A piezoelectric multilayer-stacked hybrid actuation/transduction system, Appl. Phys. Lett., 98, 243503, 10.1063/1.3600057
Morimoto, 2010, High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers, Sensor. Actuator. Phys., 163, 428, 10.1016/j.sna.2010.06.028
Yeo, 2016, Efficient piezoelectric energy harvesters utilizing (001) textured bimorph PZT films on flexible metal foils, Adv. Funct. Mater., 26, 5940, 10.1002/adfm.201601347
Hwang, 2016, Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester, Adv. Energy Mater., 6, 10.1002/aenm.201600237
Xu, 2010, Piezoelectric-nanowire-enabled power source for driving wireless microelectronics, Nat. Commun., 1, 93, 10.1038/ncomms1098
Tang, 2014, Development of high performance piezoelectric d 33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film, Sensor. Actuator. Phys., 205, 150, 10.1016/j.sna.2013.11.007
Erturk, A., Bilgen, O., and Inman, D.J. (2008). Performance analysis of single crystal PMN-PZT unimorphs for piezoelectric energy harvesting. in Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS2008.
Hwang, 2014, Self-powered cardiac pacemaker Enabled by flexible single crystalline PMN-PT piezoelectric energy harvester, Adv. Mater., 26, 4880, 10.1002/adma.201400562
Hwang, 2015, A reconfigurable rectified flexible energy harvester via solid-state single crystal grown PMN-PZT, Adv. Energy Mater., 5, 10.1002/aenm.201500051
Zeng, 2016, High performance of macro-flexible piezoelectric energy harvester using a 0.3 PIN-0.4 Pb (Mg1/3Nb2/3)O3-0.3PbTiO3 flake array, Smart Mater. Struct., 25, 125015, 10.1088/0964-1726/25/12/125015
Xu, 2013, Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device, Nano Lett., 13, 2393, 10.1021/nl400169t
Wu, 2017, PMN-PT nanostructures for energy scavenging, Semicond. Sci. Technol., 32, 063001, 10.1088/1361-6641/aa6551
Chen, 2017, A flexible PMN-PT ribbon-based piezoelectric-pyroelectric hybrid generator for human-activity energy harvesting and monitoring, Adv. Electron. Mater., 3, 10.1002/aelm.201600540
Marin, 2011, Multiple cell configuration electromagnetic vibration energy harvester, J. Phys. D, 44, 295501, 10.1088/0022-3727/44/29/295501
Beeby, 2007, A micro electromagnetic generator for vibration energy harvesting, J. Micromech. Microeng., 17, 1257, 10.1088/0960-1317/17/7/007
Yang, 2017, On the efficiency of piezoelectric energy harvesters, Extreme Mech. Lett., 15, 26, 10.1016/j.eml.2017.05.002
Kim, 2015, Efficiency of piezoelectric mechanical vibration energy harvesting, Smart Mater. Struct., 24, 055006, 10.1088/0964-1726/24/5/055006
Akaydin, 2012, The performance of a self-excited fluidic energy harvester, Smart Mater. Struct., 21, 025007, 10.1088/0964-1726/21/2/025007
Shafer, 2014, The power and efficiency limits of piezoelectric energy harvesting, J. Vib. Acoust., 136, 021007, 10.1115/1.4025996
Roundy, 2005, On the effectiveness of vibration-based energy harvesting, J. Intell. Mater. Syst. Struct., 16, 809, 10.1177/1045389X05054042
Liu, 2015, A new figure of merit for wideband vibration energy harvesters, Smart Mater. Struct., 24, 125012, 10.1088/0964-1726/24/12/125012
Cammarano, 2013, Bandwidth of a nonlinear harvester with optimized electrical load, J. Phys. Conf. Ser., 476, 012071, 10.1088/1742-6596/476/1/012071
Dhote, 2018, Modeling and experimental parametric study of a tri-leg compliant orthoplanar spring based multi-mode piezoelectric energy harvester, Mech. Syst. Signal Process., 98, 268, 10.1016/j.ymssp.2017.04.031
Lee, 2009, Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film, J. Micromech. Microeng., 19, 065014, 10.1088/0960-1317/19/6/065014
Shen, 2009, Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting, Sensor. Actuator. Phys., 154, 103, 10.1016/j.sna.2009.06.007
Park, 2010, Modeling and characterization of piezoelectric d33-mode MEMS energy harvester, J. Microelectromech. Syst., 19, 1215, 10.1109/JMEMS.2010.2067431
Tang, 2012, Fabrication and analysis of high-performance piezoelectric MEMS generators, J. Micromech. Microeng., 22, 065017, 10.1088/0960-1317/22/6/065017
Minh le, 2015, Highly piezoelectric MgZr co-doped aluminum nitride-based vibrational energy harvesters [Correspondence], IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 62, 2005, 10.1109/TUFFC.2014.006750
Tang, 2016, A piezoelectric micro generator worked at low frequency and high acceleration based on PZT and phosphor bronze bonding, Sci. Rep., 6, 38798, 10.1038/srep38798
Song, 2017, Ultra-low resonant piezoelectric MEMS energy harvester with high power density, J. Microelectromech. Syst., 26, 1226, 10.1109/JMEMS.2017.2728821
Dai, 2009, Modeling, characterization and fabrication of vibration energy harvester using Terfenol-D/PZT/Terfenol-D composite transducer, Sensor. Actuator. Phys., 156, 350, 10.1016/j.sna.2009.10.002
Kim, 2010, Modeling and experimental verification of proof mass effects on vibration energy harvester performance, Smart Mater. Struct., 19, 045023, 10.1088/0964-1726/19/4/045023
Liang, J., and Liao, W.-H. (2010). Impedance matching for improving piezoelectric energy harvesting systems. in SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics.
Gu, 2011, Low-frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation, Microelectron. J., 42, 277, 10.1016/j.mejo.2010.10.007
Li, 2011, A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58, 698, 10.1109/TUFFC.2011.1862
Yen, 2011, Corrugated aluminum nitride energy harvesters for high energy conversion effectiveness, J. Micromech. Microeng., 21, 085037, 10.1088/0960-1317/21/8/085037
Dhakar, 2013, A new energy harvester design for high power output at low frequencies, Sensor. Actuator. Phys., 199, 344, 10.1016/j.sna.2013.06.009
Wu, 2013, A novel two-degrees-of-freedom piezoelectric energy harvester, J. Intell. Mater. Syst. Struct., 24, 357, 10.1177/1045389X12457254
Arrieta, 2013, Broadband vibration energy harvesting based on cantilevered piezoelectric bi-stable composites, Appl. Phys. Lett., 102, 173904, 10.1063/1.4803918
Qiu, 2014, A vibration energy harvester using magnet/piezoelectric composite transducer, J. Appl. Physiol., 115, 17E522, 10.1063/1.4867599
Ma, 2014, Enhanced energy harvesting performance of the piezoelectric unimorph with perpendicular electrodes, Appl. Phys. Lett., 105, 043905, 10.1063/1.4891851
Zhang, 2014, Experimental study of a multi-impact energy harvester under low frequency excitations, Smart Mater. Struct., 23, 055002, 10.1088/0964-1726/23/5/055002
Xiao, 2014, Energy harvester array using piezoelectric circular diaphragm for broadband vibration, Appl. Phys. Lett., 104, 223904, 10.1063/1.4878537
Hung, 2015, A miniature mechanical-piezoelectric-configured three-axis vibrational energy harvester, IEEE Sens. J., 15, 5601, 10.1109/JSEN.2015.2444993
Singh, 2015, A broadband bistable piezoelectric energy harvester with nonlinear high-power extraction, IEEE Trans. Power Electron., 30, 6763, 10.1109/TPEL.2015.2394392
Sriramdas, 2015, Performance enhancement of piezoelectric energy harvesters using multilayer and multistep beam configurations, IEEE Sens. J., 15, 3338, 10.1109/JSEN.2014.2387882
Gong, 2015, Harvesting vibration energy using two modal vibrations of a folded piezoelectric device, Appl. Phys. Lett., 107, 033904, 10.1063/1.4927331
Yi, 2017, High performance bimorph piezoelectric MEMS harvester via bulk PZT thick films on thin beryllium-bronze substrate, Appl. Phys. Lett., 111, 013902, 10.1063/1.4991368
He, 2017, Complementary multi-mode low-frequency vibration energy harvesting with chiral piezoelectric structure, Appl. Phys. Lett., 110, 213901, 10.1063/1.4983676
Wong, 2017, Performance of a piezoelectric energy harvester in actual rain, Energy, 124, 364, 10.1016/j.energy.2017.02.015
Guigon, 2008, Harvesting raindrop energy: experimental study, Smart Mater. Struct., 17, 015039, 10.1088/0964-1726/17/01/015039
Wong, 2017, Development of vibration-based piezoelectric raindrop energy harvesting system, J. Electron. Mater., 46, 1869, 10.1007/s11664-016-5252-4
Wong, 2017, On accumulation of water droplets in piezoelectric energy harvesting, J. Intell. Mater. Syst. Struct., 28, 521, 10.1177/1045389X16649702
Guo, 2017, Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements, Renew. Sustain. Energ. Rev., 72, 761, 10.1016/j.rser.2017.01.090
Rastegar, J., Murray, R., Pereira, C., and Nguyen, H.-L. (2009). Event sensing and energy-harvesting power sources for gun-fired munitions. in SPIE Smart Structures Materials+ Nondestructive Evaluation and Health Monit.oring. International Society for Optics and Photonics.
Ostasevicius, 2015, Cutting tool vibration energy harvesting for wireless sensors applications, Sensor. Actuator. Phys., 233, 310, 10.1016/j.sna.2015.07.014
Shafer, 2015, The case for energy harvesting on wildlife in flight, Smart Mater. Struct., 24, 025031, 10.1088/0964-1726/24/2/025031
Li, 2016, An energy harvesting underwater acoustic transmitter for aquatic animals, Sci. Rep., 6, 33804, 10.1038/srep33804
Winter, 2009
DeVita, 2007, Muscles do more positive than negative work in human locomotion, J. Exp. Biol., 210, 3361, 10.1242/jeb.003970
Lindstedt, 2001, When active muscles lengthen: properties and consequences of eccentric contractions, Physiology, 16, 256, 10.1152/physiologyonline.2001.16.6.256
Niu P., Chapman, P., Riemer, R., and Zhang, X. (2004). Evaluation of motions and actuation methods for biomechanical energy harvesting. in Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual. IEEE.
Riemer, 2011, Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions, J. Neuroeng. Rehabil., 8, 22, 10.1186/1743-0003-8-22
Partridge, 2016, An analysis of the energy flow and energy potential from human energy harvesting with a focus on walking, Cogent Eng., 3, 1215203, 10.1080/23311916.2016.1215203
Fu, H., Cao, K., Xu, R., Bhouri, M.A., Martínez-Botas, R., Kim, S.-G., and Yeatman, E.M. Footstep energy harvesting using heel strike-induced airflow for human activity sensing. in Wearable and Implantable Body Sensor Networks (BSN), 2016 IEEE 13th International Conference. 2016. IEEE.
Ylli, 2015, Energy harvesting from human motion: exploiting swing and shock excitations, Smart Mater. Struct., 24, 025029, 10.1088/0964-1726/24/2/025029
Hayashida, 2000
Shenck, 2001, Energy scavenging with shoe-mounted piezoelectrics, IEEE Micro, 21, 30, 10.1109/40.928763
Moro, 2010, Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers, Smart Mater. Struct., 19, 115011, 10.1088/0964-1726/19/11/115011
Fan, 2017, Scavenging energy from human walking through a shoe-mounted piezoelectric harvester, Appl. Phys. Lett., 110, 143902, 10.1063/1.4979832
Mateu, 2005, Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts, J. Intell. Mater. Syst. Struct., 16, 835, 10.1177/1045389X05055280
Meier, R., Kelly, N., Almog, O., and Chiang, P. (2014). A piezoelectric energy-harvesting shoe system for podiatric sensing. in Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE. IEEE.
Fourie, 2010, Shoe mounted PVDF piezoelectric transducer for energy harvesting, MORJ Rep., 19, 66
Ishida, 2013, Insole pedometer with piezoelectric energy harvester and 2 V organic circuits, IEEE J. Solid State Circ., 48, 255, 10.1109/JSSC.2012.2221253
Zhao, 2014, A shoe-embedded piezoelectric energy harvester for wearable sensors, Sensors, 14, 12497, 10.3390/s140712497
Jung, 2015, Powerful curved piezoelectric generator for wearable applications, Nano Energy, 13, 174, 10.1016/j.nanoen.2015.01.051
Daniels, 2013, Design, analysis and testing of a piezoelectric flex transducer for harvesting bio-kinetic energy, J. Phys. Conf. Ser., 476, 012047, 10.1088/1742-6596/476/1/012047
Xie, 2014, Increased piezoelectric energy harvesting from human footstep motion by using an amplification mechanism, Appl. Phys. Lett., 105, 143901, 10.1063/1.4897624
Niu, P., Chapman, P., DiBerardino, L., and Hsiao-Wecksler, E. (2008). Design and optimization of a biomechanical energy harvesting device. in Power Electronics Specialists Conference, 2008. PESC 2008. IEEE. IEEE.
Amar, 2015, Power approaches for implantable medical devices, Sensors, 15, 28889, 10.3390/s151128889
Bradley, P.D. (2006). An ultra low power, high performance medical implant communication system (MICS) transceiver for implantable devices. in Biomedical Circuits and Systems Conference, 2006. BioCAS 2006. IEEE. IEEE.
Wong, 2004, A very low-power CMOS mixed-signal IC for implantable pacemaker applications, IEEE J. Solid State Circ., 39, 2446, 10.1109/JSSC.2004.837027
Padeletti, 2005, Digital technology for cardiac pacing, Am. J. Cardiol., 95, 479, 10.1016/j.amjcard.2004.10.015
Kim, S., Cho, N., Song, S.-J., Kim, D., Kim, K., and Yoo, H.-J. (2006). A 0.9-V 96-μW digital hearing aid chip with heterogeneous Σ−Δ DAC. in Proc. IEEE Symp. VLSI Circuits.
Sarpeshkar, 2005, An ultra-low-power programmable analog bionic ear processor, IEEE Trans. Biomed. Eng., 52, 711, 10.1109/TBME.2005.844043
Weiland, 2005, Retinal prosthesis, Annu. Rev. Biomed. Eng., 7, 361, 10.1146/annurev.bioeng.7.060804.100435
Wise, 2004, Wireless implantable microsystems: high-density electronic interfaces to the nervous system, Proc. IEEE, 92, 76, 10.1109/JPROC.2003.820544
Zurbuchen, 2013, Energy harvesting from the beating heart by a mass imbalance oscillation generator, Ann. Biomed. Eng., 41, 131, 10.1007/s10439-012-0623-3
Lentner, 1990, Volume 5
Papademetris, 2000, Cardiac image analysis: motion and deformation, 2, 675
Deterre, 2012, An active piezoelectric energy extraction method for pressure energy harvesting, Smart Mater. Struct., 21, 085004, 10.1088/0964-1726/21/8/085004
Länne, 1992, Noninvasive measurement of diameter changes in the distal abdominal aorta in man, Ultrasound Med. Biol., 18, 451, 10.1016/0301-5629(92)90084-N
Dammers, 2003, Shear stress depends on vascular territory: comparison between common carotid and brachial artery, J. Appl. Physiol., 94, 485, 10.1152/japplphysiol.00823.2002
Karami, 2012, Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters, Appl. Phys. Lett., 100, 042901, 10.1063/1.3679102
Karami, M.A., and Inman, D.J. (2011). Linear and nonlinear energy harvesters for powering pacemakers from heart beat vibrations. in Active and Passive Smart Structures and Integrated Systems 2011. International Society for Optics and Photonics.
Ansari, 2017, Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers, Smart Mater. Struct., 26, 065001, 10.1088/1361-665X/aa6cfd
Sharpes, 2015, Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters, Appl. Phys. Lett., 107, 093901, 10.1063/1.4929844
Alrashdan, 2015, Design and optimization of cantilever based piezoelectric micro power generator for cardiac pacemaker, Microsystem Tech., 21, 1607, 10.1007/s00542-014-2334-1
Dagdeviren, 2014, Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm, Proc. Natl. Acad. Sci. USA, 111, 1927, 10.1073/pnas.1317233111
Lu, 2015, Ultra-flexible piezoelectric devices integrated with heart to harvest the biomechanical energy, Sci. Rep., 5
Bedell, 2013, Layer transfer by controlled spalling, J. Phys. D, 46, 152002, 10.1088/0022-3727/46/15/152002
Kim, 2017, In vivo self-powered wireless transmission using biocompatible flexible energy harvesters, Adv. Funct. Mater.
Hwang, 2015, Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications, Adv. Healthc. Mater., 4, 646, 10.1002/adhm.201400642
Wang, 2011, A shear mode piezoelectric energy harvester based on a pressurized water flow, Sensor. Actuator. Phys., 167, 449, 10.1016/j.sna.2011.03.003
Kim, 2005, Piezoelectric energy harvesting with a clamped circular plate: experimental study, J. Intell. Mater. Syst. Struct., 16, 855, 10.1177/1045389X05054043
Mo, 2010, Experimental validation of energy harvesting performance for pressure-loaded piezoelectric circular diaphragms, Smart Mater. Struct., 19, 075010, 10.1088/0964-1726/19/7/075010
Sohn, 2005, An investigation on piezoelectric energy harvesting for MEMS power sources, J. Mech. Eng. Sci., 219, 429, 10.1243/095440605X16947
Deterre, 2014, Micro blood pressure energy harvester for intracardiac pacemaker, J. Microelectromech. Syst., 23, 651, 10.1109/JMEMS.2013.2282623
Reddy, 2015, Percutaneous implantation of an entirely intracardiac leadless pacemaker, N. Engl. J. Med., 373, 1125, 10.1056/NEJMoa1507192
Potkay, J.A., and Brooks K. An arterial cuff energy scavenger for implanted microsystems. in Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International Conference. 2008. IEEE.
Zhang, 2015, A flexible and implantable piezoelectric generator harvesting energy from the pulsation of ascending aorta: in vitro and in vivo studies, Nano Energy, 12, 296, 10.1016/j.nanoen.2014.12.038
Auzanneau, 2013, Wire troubleshooting and diagnosis: review and perspectives, Prog. Electromagn. Res. B, 49, 253, 10.2528/PIERB13020115
Khalatkar, 2017, Piezoelectric energy harvester for low engine vibrations, J. Renew. Sustain. Energ., 9, 024701, 10.1063/1.4979501
Wang, 2015, A nonlinear suspended energy harvester for a tire pressure monitoring system, Micromachines, 6, 312, 10.3390/mi6030312
Wang, 2012, Wideband electromagnetic energy harvesting from a rotating wheel
van Schaijk, 2013, A MEMS vibration energy harvester for automotive applications, Proc. SPIE, 10.1117/12.2016916
Kim, 2015, Piezoelectric energy harvesting from torsional vibration in internal combustion engines, Int. J. Auto. Technol., 16, 645, 10.1007/s12239-015-0066-6
Zuo, 2013, Large-scale vibration energy harvesting, J. Intell. Mater. Syst. Struct., 24, 1405, 10.1177/1045389X13486707
Tianchen, 2014, Vibration energy harvesting system for railroad safety based on running vehicles, Smart Mater. Struct., 23, 125046, 10.1088/0964-1726/23/12/125046
Bowen, 2015, Energy harvesting technologies for tire pressure monitoring systems, Adv. Energy Mater., 5, 10.1002/aenm.201401787
Kubba, 2014, A comprehensive study on technologies of tyre monitoring systems and possible energy solutions, Sensors (Basel), 14, 10306, 10.3390/s140610306
Löhndorf, M., Kvisterøy, T., Westby, E., and Halvorsen, E. (2007). Evaluation of energy harvesting concepts for tire pressure monitoring systems. Proceedings of Power MEMS, p. 331–334.
Kubba, 2014, Modeling of strain energy harvesting in pneumatic tires using piezoelectric transducer, Tire Sci. Technol., 42, 16, 10.2346/tire.14.420102
Garcia-Pozuelo, 2017, A strain-based method to estimate slip angle and tire working conditions for intelligent tires using fuzzy logic, Sensors (Basel), 17, 874, 10.3390/s17040874
Roveri, 2016, OPTYRE—A new technology for tire monitoring: Evidence of contact patch phenomena, Mech. Syst. Signal Process., 66, 793, 10.1016/j.ymssp.2015.06.019
Xiong, 2015, Rolling deformation of truck tires: measurement and analysis using a tire sensing approach, J. Terramech., 61, 33, 10.1016/j.jterra.2015.07.004
Xiong, 2014, A laser-based sensor system for tire tread deformation measurement, Meas. Sci. Tech., 25, 115103, 10.1088/0957-0233/25/11/115103
Tuononen, 2008, Optical position detection to measure tyre carcass deflections, Vehicle Syst. Dyn., 46, 471, 10.1080/00423110701485043
Matilainen, 2015, Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer, Mech. Syst. Signal Process., 52, 548, 10.1016/j.ymssp.2014.08.002
Behroozinia, 2017, An investigation of intelligent tires using multiscale modeling of cord-rubber composites, Mech. Base. Des. Struct. Mach., 1
Roundy, S. (2008). Energy harvesting for tire pressure monitoring systems: design considerations. Proceedings of Power MEMS + MicroMEMS, Sendai, Japan: p. 9–12.
Moon, K.S., Liang, H., Yi, J., and Mika, B. (2007). Tire tread deformation sensor and energy harvester development for ‘Smart Tire’applications. in Proc. SPIE.
Wu, L., Wang, Y., Jia, C., and Zhang, C. Battery-less piezoceramics mode energy harvesting for automobile TPMS. in ASIC, 2009. ASICON'09. IEEE 8th International Conference. 2009. IEEE.
Mak, 2013, Piezoelectric energy harvesting for tyre pressure measurement applications, J. Automobile Eng., 227, 842, 10.1177/0954407012463849
Elfrink, R., Matova, S., de Nooijer, C., Jambunathan, M., Goedbloed, M., van de Molengraft, J., Pop, V., Vullers, R.J.M., Renaud, M., and van Schaijk, R. (2011). Shock induced energy harvesting with a MEMS harvester for automotive applications. in Electron Devices Meeting (IEDM), 2011 IEEE International. IEEE.
Zheng, 2009, Vibration energy harvesting device based on asymmetric air-spaced cantilevers for tire pressure monitoring system, Proceedings of Power MEMS, 403
Zhang, 2016, Effectiveness testing of a piezoelectric energy harvester for an automobile wheel using stochastic resonance, Sensors, 16, 1727, 10.3390/s16101727
Singh, 2012, Piezoelectric vibration energy harvesting system with an adaptive frequency tuning mechanism for intelligent tires, Mechatronics, 22, 970, 10.1016/j.mechatronics.2012.06.006
Sadeqi, 2015, Broadening the frequency bandwidth of a tire-embedded piezoelectric-based energy harvesting system using coupled linear resonating structure, IEEE/ASME Trans. Mechatronics, 20, 2085, 10.1109/TMECH.2014.2362685
Zhu, 2017, Practical design of an energy harvester considering wheel rotation for powering intelligent tire systems, J. Electron. Mater., 46, 2483, 10.1007/s11664-017-5319-x
McInnes, 2008, Enhanced vibrational energy harvesting using nonlinear stochastic resonance, J. Sound Vib., 318, 655, 10.1016/j.jsv.2008.07.017
Zheng, 2014, An application of stochastic resonance for energy harvesting in a bistable vibrating system, J. Sound Vib., 333, 2568, 10.1016/j.jsv.2014.01.020
Keck, M. (2007). A new approach of a piezoelectric vibration-based power generator to supply next generation tire sensor systems. in Sensors, 2007 IEEE. IEEE.
Jousimaa, O.J., Parmar, M., and Lee, D.-W. (2016). Energy harvesting system for intelligent tyre sensors. in Intelligent Vehicles Symposium (IV), 2016 IEEE. IEEE.
Wu, 2014, A seesaw-structured energy harvester with superwide bandwidth for TPMS application, IEEE/ASME Trans. Mechatronics, 19, 1514, 10.1109/TMECH.2013.2286637
Manla, G., White, N., and Tudor, J. (2009). Harvesting energy from vehicle wheels. in Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. IEEE.
Tang, Q., Xia, X., and Li, X.. Non-contact frequency-up-conversion energy harvester for durable & broad-band automotive TPMS application. in Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference. 2012. IEEE.
Roundy, 2014, Energy harvester for rotating environments using offset pendulum and nonlinear dynamics, Smart Mater. Struct., 23, 105004, 10.1088/0964-1726/23/10/105004
Makki, 2012, Battery-and wire-less tire pressure measurement systems (TPMS) sensor, Microsystem Tech., 18, 1201, 10.1007/s00542-012-1480-6
Makki, 2011, Piezoelectric power generation for sensor applications: design of a battery-less wireless tire pressure sensor, Proc. SPIE, 10.1117/12.887112
Makki, N., and Pop-Iliev, R. Pneumatic tire-based piezoelectric power generation. in Proc. SPIE Vol. 2011.
van den Ende, 2011, Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites, Smart Mater. Struct., 21, 015011, 10.1088/0964-1726/21/1/015011
Roundy, 2003
Bowen, 1998, Dielectric properties of dielectrophoretically assembled particulate-polymer composites, J. Mater. Res., 13, 205, 10.1557/JMR.1998.0027
Lee, 2014, Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires, Energ. Convers. Manag., 78, 32, 10.1016/j.enconman.2013.09.054
Torfs, 2013, Low power wireless sensor network for building monitoring, IEEE Sensors J., 13, 909, 10.1109/JSEN.2012.2218680
Nair, 2010, Acoustic emission monitoring of bridges: review and case studies, Eng. Struct., 32, 1704, 10.1016/j.engstruct.2010.02.020
Arampatzis, T., Lygeros, J, and Manesis, S. (2005). A survey of applications of wireless sensors and wireless sensor networks. in Intelligent Control, 2005. Proceedings of the 2005 IEEE International Symposium on, Mediterranean Conference on Control and Automation. IEEE.
Ricquebourg, V., Menga, D., Durand, D., Marhic, B., Delahoche, L., and Loge, C. The smart home concept: our immediate future. in E-Learning in Industrial Electronics, 2006 1ST IEEE International Conference on. 2006. IEEE.
Kaur, 2014, Combined energy harvesting and structural health monitoring potential of embedded piezo-concrete vibration sensors, J. Energy Eng., 141, D4014001, 10.1061/(ASCE)EY.1943-7897.0000224
Farinholt, 2010, Energy harvesting and wireless energy transmission for embedded SHM sensor nodes, Struct. Health Monit., 9, 269, 10.1177/1475921710366647
Matiko, 2013, Review of the application of energy harvesting in buildings, Meas. Sci. Tech., 25, 012002, 10.1088/0957-0233/25/1/012002
Çlelebi, 1993, Dynamic characteristics of five tall buildings during strong and low-amplitude motions, Struct. Des. Tall Spec., 2, 1, 10.1002/tal.4320020102
Peigney, 2013, Piezoelectric energy harvesting from traffic-induced bridge vibrations, Smart Mater. Struct., 22, 095019, 10.1088/0964-1726/22/9/095019
Khan, 2016, Review of energy harvesters utilizing bridge vibrations, Shock Vib., 10.1155/2016/1340402
Cao, M., and Zuo, L. (2014). Energy harvesting from building seismic isolation with multi-mode resonant shunt circuits. in ASME 2014 Dynamic Systems and Control Conference, (American Society of Mechanical Engineers).
Shen, 2016, Electromagnetic energy harvesting from structural vibrations during earthquakes, Smart Struct. Syst., 18, 449, 10.12989/sss.2016.18.3.449
Zhu, 2013, Novel miniature airflow energy harvester for wireless sensing applications in buildings, IEEE Sensors J., 13, 691, 10.1109/JSEN.2012.2226518
Khan, F.U. and I. Ahmad. Vibration-based electromagnetic type energy harvester for bridge monitoring sensor application. in Emerging Technologies (ICET), 2014 International Conference. 2014. IEEE.
Orfei, F., Mezzetti, C.B., and Cottone, F.. (2016). Vibrations powered LoRa sensor: An electromechanical energy harvester working on a real bridge. in SENSORS, 2016 IEEE. ∖
Takeya, 2016, Design and parametric study on energy harvesting from bridge vibration using tuned dual-mass damper systems, J. Sound Vib., 361, 50, 10.1016/j.jsv.2015.10.002
McEvoy, T., Dierks, E., Weaver, J., Inamdar, S., Zimowski, K., Wood, K.L., Crawford, R.H., and Jensen, D. (2011). Developing innovative energy harvesting approaches for infrastructure health monitoring systems. in Proceedings of the 37th Design Automation Conference, Parts A and B.
Galchev, 2011, Micro power generator for harvesting low-frequency and nonperiodic vibrations, J. Microelectromech. Syst., 20, 852
Tang, X. and L. Zuo. (2011). Simulation and experiment validation of simultaneous vibration control and energy harvesting from buildings using tuned mass dampers. in American Control Conference (ACC), 2011. IEEE.
Galchev, 2011, Harvesting traffic-induced vibrations for structural health monitoring of bridges, J. Micromech. Microeng., 21, 104005, 10.1088/0960-1317/21/10/104005
McCullagh, 2014, Long-term testing of a vibration harvesting system for the structural health monitoring of bridges, Sensor. Actuator. Phys., 217, 139, 10.1016/j.sna.2014.07.003
Jung, 2011, An energy harvesting system using the wind-induced vibration of a stay cable for powering a wireless sensor node, Smart Mater. Struct., 20, 075001, 10.1088/0964-1726/20/7/075001
Erturk, 2011, Piezoelectric energy harvesting for civil infrastructure system applications: moving loads and surface strain fluctuations, J. Intell. Mater. Syst. Struct., 22, 1959, 10.1177/1045389X11420593
Ali, 2011, Analysis of energy harvesters for highway bridges, J. Intell. Mater. Syst. Struct., 22, 1929, 10.1177/1045389X11417650
Zhang, 2014, Piezoelectric-based energy harvesting in bridge systems, J. Intell. Mater. Syst. Struct., 25, 1414, 10.1177/1045389X13507354
Xie, 2013, Energy harvesting from high-rise buildings by a piezoelectric coupled cantilever with a proof mass, Int. J. Eng. Sci., 72, 98, 10.1016/j.ijengsci.2013.07.004
Cahill, 2016, Effect of road surface, vehicle, and device characteristics on energy harvesting from bridge–vehicle interactions, Comput. Aided Civ. Infrastruct. Eng., 31, 921, 10.1111/mice.12228
Cahill, 2014, Energy harvesting from train-induced response in bridges, J. Bridge Eng., 19, 04014034, 10.1061/(ASCE)BE.1943-5592.0000608
Karimi, 2016, Experimental and theoretical investigations on piezoelectric-based energy harvesting from bridge vibrations under travelling vehicles, Int. J. Mech. Sci., 119, 1, 10.1016/j.ijmecsci.2016.09.029
Bhaskaran, 2017, Multiresonant frequency piezoelectric energy harvesters integrated with high sensitivity piezoelectric accelerometer for bridge health monitoring applications, Smart Mater. Res., 2017
Maruccio, 2016, Energy harvesting from electrospun piezoelectric nanofibers for structural health monitoring of a cable-stayed bridge, Smart Mater. Struct., 25, 085040, 10.1088/0964-1726/25/8/085040
Lee, 2009, Robust segment-type energy harvester and its application to a wireless sensor, Smart Mater. Struct., 18, 095021, 10.1088/0964-1726/18/9/095021
Rhimi, 2012, Tunable energy harvesting from ambient vibrations in civil structures, J. Energy Eng., 138, 185, 10.1061/(ASCE)EY.1943-7897.0000077
Leland, 2006, Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload, Smart Mater. Struct., 15, 1413, 10.1088/0964-1726/15/5/030
Kim, 2011, Analysis of piezoelectric effects on various loading conditions for energy harvesting in a bridge system, Sensor. Actuator. Phys., 167, 468, 10.1016/j.sna.2011.03.007
Xie, 2015, Energy harvesting from high-rise buildings by a piezoelectric harvester device, Energy, 93, 1345, 10.1016/j.energy.2015.09.131