Kiến trúc Bộ lọc DWT 5/3 Đảo ngược 1-D và 2-D Hiệu suất Cao cho Triển Khai Phần Cứng Hiệu Quả

Circuits, Systems, and Signal Processing - Tập 36 - Trang 3674-3701 - 2016
Goran Savić1, Milan Prokin2, Vladimir Rajović2, Dragana Prokin3
1University of Belgrade-School of Electrical Engineering, Belgrade, Serbia
2University of Belgrade — School of Electrical Engineering, Belgrade, Serbia
3School of Electrical and Computer Engineering of Applied Studies, Belgrade, Serbia

Tóm tắt

Bài báo này trình bày các kiến trúc phần cứng hiệu suất cao và tiết kiệm bộ nhớ cho bộ lọc đảo ngược biến đổi sóng rời 5/3 một chiều (1-D) và hai chiều (2-D). Kiến trúc bộ lọc 1-D được đề xuất yêu cầu ít tài nguyên bộ nhớ hơn 33% và ít tài nguyên logic hơn 17% so với các giải pháp tiên tiến tốt nhất hiện nay. Kiến trúc bộ lọc 1-D được đề xuất có hiệu suất sử dụng phần cứng 100%, được xác định là tỷ lệ giữa thời gian tính toán thực tế và tổng thời gian xử lý, cả hai đều được biểu thị bằng số chu kỳ đồng hồ. Nó cho phép tần số hoạt động cao hơn 7% và cùng lúc có mức tiêu thụ điện năng tổng thấp nhất so với các giải pháp tiên tiến tốt nhất hiện nay. Kiến trúc DWT đảo ngược 2-D 5/3 đề xuất, dựa trên thiết kế bộ lọc DWT đảo ngược 1-D được đề xuất, cung cấp thời gian tính toán tổng hợp trung bình và độ trễ đầu ra, nhưng vượt trội hơn các giải pháp tiên tiến tốt nhất hiện nay từ ít nhất 20% về dung lượng bộ nhớ yêu cầu.

Từ khóa

#bộ lọc DWT 5/3 #đảo ngược DWT #kiến trúc phần cứng #hiệu suất cao #tiết kiệm bộ nhớ

Tài liệu tham khảo

T. Acharya, C. Chakrabarti, A survey on lifting-based discrete wavelet transform architectures. J. VLSI Signal Process. 42(3), 321–339 (2006) T. Acharya, P.S. Tsai, JPEG2000 Standard for Image Compression: Concepts, Algorithms and VLSI Architectures (Wiley, Hoboken, 2005) M.D. Adams, F. Kossentini, Reversible integer-to-integer wavelet transforms for image compression: performance evaluation and analysis. IEEE Trans. Image Process. 9(6), 1010–1024 (2000) K. Andra, C. Chakrabarti, T. Acharya, A VLSI architecture for lifting-based forward and inverse wavelet transform. IEEE Trans. Signal Process. 50(4), 966–977 (2002) S.M. Aziz, D.M. Pham, Efficient parallel architecture for multi-level forward discrete wavelet transform processors. Comput. Electr. Eng. 38(5), 1325–1335 (2012) S. Barua, J.E. Carletta, K.A. Kotteri, A.E. Bell, An efficient architecture for lifting-based two-dimensional discrete wavelet transform. Integr. VLSI J. 38(3), 341–352 (2005) C. Chakrabarti, M. Vishwanath, Efficient realizations of the discrete and continuous wavelet transforms: from single chip implementations to mappings on SIMD array computers. IEEE Trans. Signal Process. 43(3), 759–771 (1995) W.H. Chang, Y.S. Lee, W.S. Peng, C.Y. Lee, A line-based, memory efficient and programmable architecture for 2D DWT using lifting scheme. In Proceedings of IEEE International Symposium of Circuits and Systems (ISCAS) (Sydney, Australia, 2001), vol. 4, pp. 330–333 C. Cheng, K.K. Parhi, High-speed VLSI implementation of 2-D discrete wavelet transform. IEEE Trans. Signal Process. 56(1), 393–403 (2008) A.D. Darji, S.S. Kushwah, S.N. Merchant, A.N. Chandorkar, High-performance hardware architectures for multi-level lifting-based discrete wavelet transform. Eurasip J. Image Video Process. 47, 1–19 (2014) G. Dillen, B. Georis, J.D. Legat, O. Cantineau, Combined line-based architecture for the 5–3 and 9–7 wavelet transform of JPEG2000. IEEE Trans. Circuits Syst. Video Technol. 13(9), 944–950 (2003) M. Ghantous, M. Bayoumi, P\(^{2}\)E-DWT: a parallel and pipelined efficient VLSI architecture of 2-D discrete wavelet transform. In Proceedings of IEEE International Symposium of Circuits and Systems (ISCAS) (Rio de Janeiro, Brazil, 2011), pp. 941–944 C.-H. Hsia, J.-S. Chiang, J.-M. Guo, Memory-efficient hardware architecture of 2-D dual-mode lifting-based discrete wavelet transform. IEEE Trans. Circuits Syst. Video Technol. 23(4), 671–683 (2012) C.T. Huang, P.C. Tseng, L.G. Chen, Flipping structure: an efficient VLSI architecture for lifting-based discrete wavelet transform. IEEE Trans. Signal Process. 52(4), 1080–1089 (2004) J.M. Jou, Y.H. Shiau, C.C. Liu, Efficient VLSI architectures for the biorthogonal wavelet transform by filter bank and lifting scheme. In Proceedings of IEEE International Symposium of Circuits and Systems (ISCAS) (Sydney, Australia, 2001), vol. 2, pp. 529–529 X. Lan, N. Zheng, Y. Liu, Low-power and high-speed VLSI architecture for lifting-based forward and inverse wavelet transform. IEEE Trans. Consum. Electr. 51(2), 379–385 (2005) D. Le Gall, A. Tabatabai, Subband coding of digital images using symmetric short kernel filters and arithmetic coding techniques. In Proceedings of International Conference Acoustics, Speech, Signal Processing (ICASSP) (New York, NY, 1988), vol. 2, pp. 761–765 C.J. Lian, K.F. Chen, H.H. Chen, L.G. Chen, Lifting based discrete wavelet transform architecture for JPEG2000. In Proceedings of IEEE International Symposium of Circuits and Systems (ISCAS) (Sydney, Australia, 2001), vol. 2, pp. 445–448 H. Liao, M.K. Mandal, B.F. Cockburn, Efficient implementation of lifting-based discrete wavelet transform. Electron. Lett. 38(18), 1010–1012 (2002) H. Liao, M.K. Mandal, B.F. Cockburn, Efficient architectures for 1-D and 2-D lifting-based wavelet transforms. IEEE Trans. Signal Process. 52(5), 1315–1326 (2004) L. Liu, N. Chen, H. Meng, L. Zhang, Z. Wang, H. Chen, A VLSI architecture of JPEG2000 encoder. IEEE J. Solid State Circuits 39(11), 2032–2040 (2004) C.C. Liu, Y.H. Shiau, J.M. Jou, Design and implementation of a progressive image coding chip based on the lifted wavelet transform. In Proceedings of the 11th VLSI Design/CAD Symposium (Taiwan, 2000) pp. 49–52 S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989) S.G. Mallat, Multifrequency channel decompositions of images and wavelet models. IEEE Trans. Acoust. Speech Signal Process. 37(12), 2091–2110 (1989) F. Marino, Efficient high-speed/low-power pipelined architecture for the direct 2-D discrete wavelet transform. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 47(12), 1476–1491 (2000) M. Martina, G. Masera, G. Piccinini, M. Zamboni, Novel JPEG 2000 compliant DWT and IWT VLSI implementations. J. VLSI Signal Process. 34(2), 137–153 (2003) B.K. Mohanty, P.K. Meher, Memory efficient modular VLSI architecture for highthroughput and low-latency implementation of multilevel lifting 2-D DWT. IEEE Trans. Signal Process. 59(5), 2072–2084 (2011) K.K. Parhi, T. Nishitani, VLSI architectures for discrete wavelet transforms. IEEE Trans. Very Large Scale Integr. Syst. 1(2), 191–202 (1993) G. Strang, T.Q. Nquyen, Wavelets and Filter Banks (Wellesley-Cambridge Press, Cambridge, 1996) B.N. Usha, A. Chilambuchelvan, Efficient VLSI architecture for discrete wavelet transform. IJCSI 1(1), 1694–0814 (2011) P.P. Vaidyanathan, Multirate Systems and Filter Banks (Prentice-Hall, Englewood Cliffs, 1993) M. Vetterli, J. Kovacevic, Wavelets and Subband Coding (Prentice-Hall, Englewood Cliffs, 1995) M. Vishwanath, R.M. Owens, M.J. Irwin, VLSI architectures for the discrete wavelet transform. IEEE Trans. Circuits Syst. II 42(5), 305–316 (1995) P.C. Wu, L.G. Chen, An efficient architecture for two-dimensional discrete wavelet transform. IEEE Trans. Circuits Syst. Video Technol. 11(4), 536–545 (2001) B.F. Wu, C.F. Lin, A high-performance and memory-efficient pipeline architecture for the 5/3 and 9/7 discrete wavelet transform of JPEG2000 codec. IEEE Trans. Circuits Syst. Video Technol. 15(12), 1615–1628 (2005) C.-Y. Xiong, J.-W. Tian, J. Liu, Efficient architectures for two-dimensional discrete wavelet transform using lifting scheme. IEEE Trans. Image Process. 16(3), 607–614 (2007) N.D. Zervas, G.P. Anagnostopoulos, V. Spiliotopoulos, Y. Andreopoulos, C.E. Goutis, Evaluation of design alternatives for the 2-D-discrete wavelet transform. IEEE Trans. Circuits Syst. Video Technol. 11(12), 1246–1262 (2001)