High-Order Decoupled and Bound Preserving Local Discontinuous Galerkin Methods for a Class of Chemotaxis Models

Communications on Applied Mathematics and Computation - Tập 6 Số 1 - Trang 372-398 - 2024
Wei Zheng1, Yan Xu1
1School of Mathematical Sciences, University of Science and Technology of China, Hefei, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amestoy, P.R., Duff, I.S., Ruiz, D., Uçar, B.: A parallel matrix scaling algorithm. Lect. Notes Comput. Sci. (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5336 LNCS, 301–313 (2008)

Chertock, A., Kurganov, A.: A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models. Numer. Math. 111(2), 169–205 (2008)

Childress, S., Percus, J.K.: Nonlinear aspects of chemotaxis. Math. Biosci. 56(3/4), 217–237 (1981)

Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comp. 54(190), 545–581 (1990)

Cockburn, B., Lin, S.Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)

Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comp. 52(186), 411–435 (1989)

Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)

Epshteyn, Y.: Upwind-difference potentials method for Patlak-Keller-Segel chemotaxis model. J. Sci. Comput. 53(3), 689–713 (2012)

Epshteyn, Y., Izmirlioglu, A.: Fully discrete analysis of a discontinuous finite element method for the Keller-Segel chemotaxis model. J. Sci. Comput. 40(1/2/3), 211–256 (2009)

Epshteyn, Y., Kurganov, A.: New interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model. SIAM J. Numer. Anal. 47(1), 386–408 (2008)

Guo, L., Li, X.H., Yang, Y.: Energy dissipative local discontinuous Galerkin methods for Keller-Segel chemotaxis model. J. Sci. Comput. 78(3), 1387–1404 (2019)

Guo, R., Xia, Y., Yan, X.: Semi-implicit spectral deferred correction methods for highly nonlinear partial differential equations. J. Comput. Phys. 338, 269–284 (2017)

Guo, R., Yan, X.: Semi-implicit spectral deferred correction method based on the invariant energy quadratization approach for phase field problems. Commun. Comput. Phys. 26(1), 87–113 (2019)

Gutiérrez-Santacreu, J.V., Rodríguez-Galván, J.R.: Analysis of a fully discrete approximation for the classical Keller-Segel model: lower and a priori bounds. Comput. Math. Appl. 85, 69–81 (2021)

Hillen, T., Painter, K.: Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26(4), 280–301 (2001)

Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58(1/2), 183–217 (2009)

Horstmann, D.: Lyapunov functions and $$L^p$$-estimates for a class of reaction-diffusion systems. Colloq. Math. 87(1), 113–127 (2001)

Horstmann, D.: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verein. 105(3), 103–165 (2003)

Horstmann, D.: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II. Jahresber. Deutsch. Math.-Verein. 106(2), 51–69 (2004)

Huang, F., Shen, J.: Bound/positivity preserving and energy stable scalar auxiliary variable schemes for dissipative systems: applications to Keller-Segel and Poisson-Nernst-Planck equations. SIAM J. Sci. Comput. 43(3), A1832–A1857 (2021)

Huang, H., Liu, J.-G.: Error estimate of a random particle blob method for the Keller-Segel equation. Math. Comp. 86(308), 2719–2744 (2017)

Karniadakis, G.E., Sherwin, S.J.: Spectral/$$hp$$ element methods for computational fluid dynamics. In: Numerical Mathematics and Scientific Computation, 2nd edn. Oxford University Press, New York (2005)

Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26(3), 399–415 (1970)

Li, X.H., Shu, C.-W., Yang, Y.: Local discontinuous Galerkin method for the Keller-Segel chemotaxis model. J. Sci. Comput. 73(2–3), 943–967 (2017)

Liu, J.-G., Wang, L., Zhou, Z.: Positivity-preserving and asymptotic preserving method for 2D Keller-Segal equations. Math. Comp. 87(311), 1165–1189 (2018)

Patlak, C.S.: Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338 (1953)

Perthame, B.: Transport equations in biology. In: Frontiers in Mathematics. Birkhäuser Verlag, Basel (2007)

Qiu, C., Liu, Q., Yan, J.: Third order positivity-preserving direct discontinuous Galerkin method with interface correction for chemotaxis Keller-Segel equations. J. Comput. Phys. 433, 17 (2021)

Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical report, Los Alamos Scientific Lab, N. Mex. (USA) (1973)

Saito, N.: Conservative upwind finite-element method for a simplified Keller-Segel system modelling chemotaxis. IMA J. Numer. Anal. 27(2), 332–365 (2007)

Shen, J., Xu, J.: Unconditionally bound preserving and energy dissipative schemes for a class of Keller-Segel equations. SIAM J. Numer. Anal. 58(3), 1674–1695 (2020)

Shen, J., Jie, X., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

Sulman, M., Nguyen, T.: A positivity preserving moving mesh finite element method for the Keller-Segel chemotaxis model. J. Sci. Comput. 80(1), 649–666 (2019)

Suzuki, T.: Free energy and self-interacting particles. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 62. Birkhäuser Boston Inc, Boston, MA (2005)

Van der Vegt, J.J.W., Xia, Y., Xu, Y.: Positivity preserving limiters for time-implicit higher order accurate discontinuous Galerkin discretizations. SIAM J. Sci. Comput. 41(3), A2037–A2063 (2019)

Velázquez, J.J.L.: Point dynamics in a singular limit of the Keller-Segel model. I. Motion of the concentration regions. SIAM J. Appl. Math. 64(4), 1198–1223 (2004)

Velázquez, J.J.L.: Point dynamics in a singular limit of the Keller-Segel model. II. Formation of the concentration regions. SIAM J. Appl. Math. 64(4), 1224–1248 (2004)

Wang, S., Zhou, S., Shi, S., Chen, W.: Fully decoupled and energy stable BDF schemes for a class of Keller-Segel equations. J. Comput. Phys. 449, 18 (2022)

Xia, Y., Xu, Y., Shu, C.-W.: Efficient time discretization for local discontinuous Galerkin methods. Discrete Contin. Dyn. Syst. Ser. B 8(3), 677–693 (2007)

Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229(9), 3091–3120 (2010)

Zhao, J., Wang, Q., Yang, X.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Methods Eng. 110(3), 279–300 (2017)

Zhou, G.: An analysis on the finite volume schemes and the discrete Lyapunov inequalities for the chemotaxis system. J. Sci. Comput. 87(2), 47 (2021)

Zhou, G., Saito, N.: Finite volume methods for a Keller-Segel system: discrete energy, error estimates and numerical blow-up analysis. Numer. Math. 135(1), 265–311 (2017)