High-Order Algorithms for Riesz Derivative and their Applications (III)
Tóm tắt
Từ khóa
Tài liệu tham khảo
A.A. Alikhanov, A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280 (2015), 424–438.
T. Blaszczyk and M. Ciesielski, Numerical solution of fractional Sturm-Liouville equation in integral form. Fract. Calc. Appl. Anal. 17, No 2 (2015), 307–320. DOI: 10.2478/s13540-014-0170-8; http://www.degruyter.com/view/j/fca.2014.17.issue-2/issue-files/fca.2014.17.issue-2.xml.
J.X. Cao, C.P. Li, and Y.Q. Chen, High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II). Fract. Calc. Appl. Anal. 18, No 3 (2015), 735–761. DOI: 10.1515/fca-2015-0045; http://www.degruyter.com/view/j/fca.2015.18.issue-3/issue-files/fca.2015.18.issue-3.xml.
Y. Dimitrov, Numerical Approximations for fractional differential equations. J. Fract. Calc. Appl. 5, No 3S (2014), Article No 22, 1–45.
H.F. Ding, C.P. Li, and Y.Q. Chen, High-order algorithms for Riesz derivative and their applications (I). Abstr. Appl. Anal. 2014 (2014), Article ID 653797, 1–17.
H.F. Ding, C.P. Li, and Y.Q. Chen, High-order algorithms for Riesz derivative and their applications (II). J. Comput. Phys. 293 (2015), 218–237.
R. Garrappa, S. Esmaeili, A pseudo-spectral scheme for the approximate solution of a time-fractional diffusion equation. Int. J. Comput. Math. 92 (2015), 980–994.
R. Garra and F. Polito, Analytic solutions of fractional differential equations by operational methods. Appl. Math. Comput. 218 (2012), 10642–10646.
B. Jin, R. Lazarov, and Z. Zhou, Error estimates for a semidiscrete finite element method for fractional-order parabolic equations. SIAMJ. Numer. Anal. 51 (2013), 445–466.
Sh.T. Karimov., Multidimensional generalized Erdélyi-Kober operator and its application to solving Cauchy problems for differential equations with singular coeffcients. Fract. Calc. Appl. Anal. 18, No 4 (2015), 845–861. DOI: 10.1515/fca-2015-0051; http://www.degruyter.com/view/j/fca.2015.18.issue-4/issue-files/fca.2015.18.issue-4.xml.
J.C. Kuang., Applied Inequalities, 2nd Ed. Shandong Scienic and Technology Press, Shandong, China (2012).
C.P. Li., A. Chen, and J.J. Ye., Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys. 230 (2011), 3352–3368.
C.P. Li. and H.F. Ding., Higher order finite difference method for reaction and anomalous diffusion equation. Appl. Math. Model. 38 (2014), 3802–3821.
C.P. Li., R.F. Wu., and H.F. Ding., High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (I). Commun. Appl. Ind. Math. 6, No 2 (2014), e-536, 1–32; doi: 10.1685/journal.caim.536.
C.P. Li. and F.H. Zeng., Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, Boca Raton, USA (2015).
Yu. Luchko and V. Kiryakova, The Mellin integral transform in fractional calculus. Fract. Calc. Appl. Anal. 16, No 2 (2013), 405–430. DOI: 10.2478/s13540-013-0025-8; http://www.degruyter.com/view/ j/fca.2013.16.issue-2/issue-files/fca.2013.16.issue-2.xml.
A. Mohebbi and M. Abbaszadeh, Compact finite difference scheme for the solution of time fractional advection-dispersion equation. Numer. Algor. 63 (2013), 431–452.
G. Pagnini, The M-Wright function as a generalization of the Gaussian density for fractional diffusion processes, Fract. Calc. Appl. Anal. 16, No 2 (2013), 436–453. DOI: 10.2478/s13540-013-0027-6; http://www.degruyter.com/view/j/fca.2013.16.issue-2/issue-files/fca.2013.16.issue-2.xml.
J. Sabatier and C. Farges, On stability of commensurate fractional order systems. Int. J. Bifurc. Chaos 22, No 4 (2012), Art. ID 1250084, 1–8.
A.W. Wharmby. and R.L. Bagley., Modifying Maxwell’s equations for dielectric materials based on techniques from viscoelasticity and concepts from fractional calculus. Int. J. Eng. Sci. 79 (2014), 59–80.