High-Mass-Loading Electrodes for Advanced Secondary Batteries and Supercapacitors

Electrochemical Energy Reviews - Tập 4 Số 2 - Trang 382-446 - 2021
Feng Wu1, Mingquan Liu1, Ying Li1, Xin Feng1, Kun Zhang1, Ying Bai1, Xinran Wang1, Chuan Wu1
1School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Dunn, B., Kamath, H., Tarascon, J.M.: Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). https://doi.org/10.1126/science.1212741

Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438

McCloskey, B.D.: Expanding the ragone plot: pushing the limits of energy storage. J. Phys. Chem. Lett. 6, 3592–3593 (2015). https://doi.org/10.1021/acs.jpclett.5b01813

Wu, F., Yang, H.Y., Bai, Y., et al.: Multi-electron reaction concept for the universal battery design. J. Energy Chem. 51, 416–417 (2020). https://doi.org/10.1016/j.jechem.2019.11.026

Huang, M.F., Zhen, S., Ren, X.L., et al.: High-voltage hydrous electrolytes for electrochemical energy storage. J. Power Sources 465, 228265 (2020). https://doi.org/10.1016/j.jpowsour.2020.228265

Kuang, Y.D., Chen, C.J., Kirsch, D., et al.: Thick electrode batteries: principles, opportunities, and challenges. Adv. Energy Mater. 9, 1901457 (2019). https://doi.org/10.1002/aenm.201901457

Wu, F., Maier, J., Yu, Y.: Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569–1614 (2020). https://doi.org/10.1039/c7cs00863e

Wang, L., Chen, B., Ma, J., et al.: Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem. Soc. Rev. 47, 6505–6602 (2018). https://doi.org/10.1039/c8cs00322j

Wang, Q., Yan, J., Fan, Z.J.: Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ. Sci. 9, 729–762 (2016). https://doi.org/10.1039/C5EE03109E

Geng, H.Y., Peng, Y., Qu, L.T., et al.: Structure design and composition engineering of carbon-based nanomaterials for lithium energy storage. Adv. Energy Mater. 10, 1903030 (2020). https://doi.org/10.1002/aenm.201903030

Manthiram, A., Vadivel Murugan, A., Sarkar, A., et al.: Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ. Sci. 1, 621–638 (2008). https://doi.org/10.1039/b811802g

Sun, H.T., Zhu, J., Baumann, D., et al.: Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 4, 45–60 (2019). https://doi.org/10.1038/s41578-018-0069-9

Gogotsi, Y., Simon, P.: True performance metrics in electrochemical energy storage. Science 334, 917–918 (2011). https://doi.org/10.1126/science.1213003

Zhang, C., Lv, W., Tao, Y., et al.: Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage. Energy Environ. Sci. 8, 1390–1403 (2015). https://doi.org/10.1039/c5ee00389j

Liu, C.C., Yan, X.J., Hu, F., et al.: Toward superior capacitive energy storage: recent advances in pore engineering for dense electrodes. Adv. Mater. 30, 1705713 (2018). https://doi.org/10.1002/adma.201705713

Wang, X., Wang, T.Y., Borovilas, J., et al.: Vertically-aligned nanostructures for electrochemical energy storage. Nano Res. 12, 2002–2017 (2019). https://doi.org/10.1007/s12274-019-2392-x

Lu, L.L., Lu, Y.Y., Xiao, Z.J., et al.: Wood-inspired high-performance ultrathick bulk battery electrodes. Adv. Mater. 30, 1706745 (2018). https://doi.org/10.1002/adma.201706745

Chen, C.J., Zhang, Y., Li, Y.J., et al.: Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors. Adv. Energy Mater. 7, 1700595 (2017). https://doi.org/10.1002/aenm.201700595

Jian, Z.L., Luo, W., Ji, X.L.: Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137, 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809

Choi, J.W., Aurbach, D.: Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13

Liu, M.Q., Xu, M., Xue, Y.F., et al.: Efficient capacitive deionization using natural basswood-derived, freestanding, hierarchically porous carbon electrodes. ACS Appl. Mater. Interfaces 10, 31260–31270 (2018). https://doi.org/10.1021/acsami.8b08232

Wang, R.H., Cui, W.S., Chu, F.L., et al.: Lithium metal anodes: present and future. J. Energy Chem. 48, 145–159 (2020). https://doi.org/10.1016/j.jechem.2019.12.024

Chen, R., Yu, M., Sahu, R.P., et al.: The development of pseudocapacitor electrodes and devices with high active mass loading. Adv. Energy Mater. 10, 1903848 (2020). https://doi.org/10.1002/aenm.201903848

Choi, S., Jung, D.S., Choi, J.W.: Scalable fracture-free SiOC glass coating for robust silicon nanoparticle anodes in lithium secondary batteries. Nano Lett. 14, 7120–7125 (2014). https://doi.org/10.1021/nl503620z

Li, X.L., Peng, W.X., Tian, R.Z., et al.: Excellent performance single-crystal NCM cathode under high mass loading for all-solid-state lithium batteries. Electrochim. Acta 363, 137185 (2020). https://doi.org/10.1016/j.electacta.2020.137185

Chen, Y., Zhou, Z.L., Li, N., et al.: Thick electrodes upon biomass-derivative carbon current collectors: high-areal capacity positive electrodes for aluminum-ion batteries. Electrochim. Acta 323, 134805 (2019). https://doi.org/10.1016/j.electacta.2019.134805

Black, J.M., Andreas, H.A.: Pore shape affects spontaneous charge redistribution in small pores. J. Phys. Chem. C 114, 12030–12038 (2010). https://doi.org/10.1021/jp103766q

Ervin, M.H.: Etching holes in graphene supercapacitor electrodes for faster performance. Nanotechnology 26, 234003 (2015). https://doi.org/10.1088/0957-4484/26/23/234003

Chmiola, J., Yushin, G., Gogotsi, Y., et al.: Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006). https://doi.org/10.1126/science.1132195

Merlet, C., Péan, C., Rotenberg, B., et al.: Highly confined ions store charge more efficiently in supercapacitors. Nat. Commun. 4, 2701 (2013). https://doi.org/10.1038/ncomms3701

Kondrat, S., Georgi, N., Fedorov, M.V., et al.: A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations. Phys. Chem. Chem. Phys. 13, 11359–11366 (2011). https://doi.org/10.1039/c1cp20798a

Urita, K., Ide, N., Isobe, K., et al.: Enhanced electric double-layer capacitance by desolvation of lithium ions in confined nanospaces of microporous carbon. ACS Nano 8, 3614–3619 (2014). https://doi.org/10.1021/nn500169k

Prehal, C., Weingarth, D., Perre, E., et al.: Tracking the structural arrangement of ions in carbon supercapacitor nanopores using in situ small-angle X-ray scattering. Energy Environ. Sci. 8, 1725–1735 (2015). https://doi.org/10.1039/C5EE00488H

Galhena, D.T.L., Bayer, B.C., Hofmann, S., et al.: Understanding capacitance variation in sub-nanometer pores by in situ tuning of interlayer constrictions. ACS Nano 10, 747–754 (2016). https://doi.org/10.1021/acsnano.5b05819

Centeno, T.A., Sereda, O., Stoeckli, F.: Capacitance in carbon pores of 0.7 to 15 nm: a regular pattern. Phys. Chem. Chem. Phys. 13, 12403–12406 (2011). https://doi.org/10.1039/C1CP20748B

Zhi, J., Wang, Y.F., Deng, S., et al.: Study on the relation between pore size and supercapacitance in mesoporous carbon electrodes with silica-supported carbon nanomembranes. RSC Adv. 4, 40296–40300 (2014). https://doi.org/10.1039/C4RA06260D

Ebner, M., Chung, D.W., García, R.E., et al.: Tortuosity anisotropy in lithium-ion battery electrodes. Adv. Energy Mater. 4, 1301278 (2014). https://doi.org/10.1002/aenm.201301278

Gao, H., Wu, Q., Hu, Y.X., et al.: Revealing the rate-limiting Li-ion diffusion pathway in ultrathick electrodes for Li-ion batteries. J. Phys. Chem. Lett. 9, 5100–5104 (2018). https://doi.org/10.1021/acs.jpclett.8b02229

Ogihara, N., Itou, Y., Sasaki, T., et al.: Impedance spectroscopy characterization of porous electrodes under different electrode thickness using a symmetric cell for high-performance lithium-ion batteries. J. Phys. Chem. C 119, 4612–4619 (2015). https://doi.org/10.1021/jp512564f

Hou, S., Gao, T., Li, X.G., et al.: Operando probing ion and electron transport in porous electrodes. Nano Energy 67, 104254 (2020). https://doi.org/10.1016/j.nanoen.2019.104254

Du, Z.J., Wood, D.L., Daniel, C., et al.: Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries. J. Appl. Electrochem. 47, 405–415 (2017). https://doi.org/10.1007/s10800-017-1047-4

Ike, I.S., Sigalas, I., Iyuke, S.E.: Modelling and optimization of electrodes utilization in symmetric electrochemical capacitors for high energy and power. J. Energy Storage 12, 261–275 (2017). https://doi.org/10.1016/j.est.2017.05.006

Sun, N., Zhu, Q.Z., Anasori, B., et al.: MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv. Funct. Mater. 29, 1906282 (2019). https://doi.org/10.1002/adfm.201906282

Higgins, T.M., Park, S.H., King, P.J., et al.: A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 10, 3702–3713 (2016). https://doi.org/10.1021/acsnano.6b00218

Liu, L., Zhao, H.P., Wang, Y., et al.: Evaluating the role of nanostructured current collectors in energy storage capability of supercapacitor electrodes with thick electroactive materials layers. Adv. Funct. Mater. 28, 1705107 (2018). https://doi.org/10.1002/adfm.201705107

Hasegawa, G., Deguchi, T., Kanamori, K., et al.: High-level doping of nitrogen, phosphorus, and sulfur into activated carbon monoliths and their electrochemical capacitances. Chem. Mater. 27, 4703–4712 (2015). https://doi.org/10.1021/acs.chemmater.5b01349

Wang, Y., Fu, X.W., Zheng, M., et al.: Strategies for building robust traffic networks in advanced energy storage devices: a focus on composite electrodes. Adv. Mater. 31, 1804204 (2019). https://doi.org/10.1002/adma.201804204

Liu, T., Zhang, F., Song, Y., et al.: Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5, 17705–17733 (2017). https://doi.org/10.1039/C7TA05646J

Dai, Y.H., Li, Q.D., Tan, S.S., et al.: Nanoribbons and nanoscrolls intertwined three-dimensional vanadium oxide hydrogels for high-rate lithium storage at high mass loading level. Nano Energy 40, 73–81 (2017). https://doi.org/10.1016/j.nanoen.2017.08.011

Yao, B., Chandrasekaran, S., Zhang, H.Z., et al.: 3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels. Adv. Mater. 32, 1906652 (2020). https://doi.org/10.1002/adma.201906652

Hao, Z.B., He, X.C., Li, H.D., et al.: Vertically aligned and ordered arrays of 2D MCo2S4@Metal with ultrafast ion/electron transport for thickness-independent pseudocapacitive energy storage. ACS Nano 14, 12719–12731 (2020). https://doi.org/10.1021/acsnano.0c02973

Yi, H.M., Li, D., Lv, Z., et al.: Constructing high-performance 3D porous self-standing electrodes with various morphologies and shapes by a flexible phase separation-derived method. J. Mater. Chem. A 7, 22550–22558 (2019). https://doi.org/10.1039/C9TA08845H

Liu, Y.W., Zhou, T.F., Zheng, Y., et al.: Local electric field facilitates high-performance Li-ion batteries. ACS Nano 11, 8519–8526 (2017). https://doi.org/10.1021/acsnano.7b04617

Li, Z., Zhang, C.Z., Han, F., et al.: Towards high-volumetric performance of Na/Li-ion batteries: a better anode material with molybdenum pentachloride-graphite intercalation compounds (MoCl5-GICs). J. Mater. Chem. A 8, 2430–2438 (2020). https://doi.org/10.1039/C9TA12651A

Chen, C.J., Zhang, Y., Li, Y.J., et al.: All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10, 538–545 (2017). https://doi.org/10.1039/c6ee03716j

Li, H., Peng, L., Wu, D.B., et al.: Ultrahigh-capacity and fire-resistant LiFePO4-based composite cathodes for advanced lithium-ion batteries. Adv. Energy Mater. 9, 1802930 (2019). https://doi.org/10.1002/aenm.201802930

Zhang, Q.T., Yu, Z.L., Du, P., et al.: Carbon nanomaterials used as conductive additives in lithium ion batteries. Recent Patents Nanotechnol. 4, 100–110 (2010). https://doi.org/10.2174/187221010791208803

Bitsch, B., Gallasch, T., Schroeder, M., et al.: Capillary suspensions as beneficial formulation concept for high energy density Li-ion battery electrodes. J. Power Sources 328, 114–123 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.102

Karkar, Z., Mazouzi, D., Hernandez, C.R., et al.: Threshold-like dependence of silicon-based electrode performance on active mass loading and nature of carbon conductive additive. Electrochim. Acta 215, 276–288 (2016). https://doi.org/10.1016/j.electacta.2016.08.118

Kuang, Y.D., Chen, C.J., Pastel, G., et al.: Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Adv. Energy Mater. 8, 1802398 (2018). https://doi.org/10.1002/aenm.201802398

Yu, L.Y., Hu, L.F., Anasori, B., et al.: MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett. 3, 1597–1603 (2018). https://doi.org/10.1021/acsenergylett.8b00718

Fan, Z.M., Wang, Y.S., Xie, Z.M., et al.: Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 5, 1800750 (2018). https://doi.org/10.1002/advs.201800750

Wang, B., Li, X.L., Luo, B., et al.: Intertwined network of Si/C nanocables and carbon nanotubes as lithium-ion battery anodes. ACS Appl. Mater. Interfaces 5, 6467–6472 (2013). https://doi.org/10.1021/am402022n

Shi, Y., Zhou, X.Y., Yu, G.H.: Material and structural design of novel binder systems for high-energy, high-power lithium-ion batteries. Acc. Chem. Res. 50, 2642–2652 (2017). https://doi.org/10.1021/acs.accounts.7b00402

Ryu, J., Kim, S., Kim, J., et al.: Room-temperature crosslinkable natural polymer binder for high-rate and stable silicon anodes. Adv. Funct. Mater. 30, 1908433 (2020). https://doi.org/10.1002/adfm.201908433

Yue, Y., Liang, H.: 3D current collectors for lithium-ion batteries: a topical review. Small Methods 2, 1800056 (2018). https://doi.org/10.1002/smtd.201800056

Zheng, J.X., Zhao, Q., Liu, X., et al.: Nonplanar electrode architectures for ultrahigh areal capacity batteries. ACS Energy Lett. 4, 271–275 (2019). https://doi.org/10.1021/acsenergylett.8b02131

de las Casas, C., Li, W.Z.: A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 208, 74–85 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.013

Park, S.H., King, P.J., Tian, R.Y., et al.: High areal capacity battery electrodes enabled by segregated nanotube networks. Nat. Energy 4, 560–567 (2019). https://doi.org/10.1038/s41560-019-0398-y

Nguyen, B.P.N., Kumar, N.A., Gaubicher, J., et al.: Nanosilicon-based thick negative composite electrodes for lithium batteries with graphene as conductive additive. Adv. Energy Mater. 3, 1351–1357 (2013). https://doi.org/10.1002/aenm.201300330

Ke, L., Lv, W., Su, F.Y., et al.: Electrode thickness control: precondition for quite different functions of graphene conductive additives in LiFePO4 electrode. Carbon 92, 311–317 (2015). https://doi.org/10.1016/j.carbon.2015.04.064

Zhang, C.J., Park, S.H., Seral-Ascaso, A., et al.: High capacity silicon anodes enabled by MXene viscous aqueous ink. Nat. Commun. 10, 849 (2019). https://doi.org/10.1038/s41467-019-08383-y

Zang, Y.H., Du, J., Du, Y.F., et al.: The migration of styrene butadiene latex during the drying of coating suspensions: when and how does migration of colloidal particles occur? Langmuir 26, 18331–18339 (2010). https://doi.org/10.1021/la103675f

Müller, M., Pfaffmann, L., Jaiser, S., et al.: Investigation of binder distribution in graphite anodes for lithium-ion batteries. J. Power Sources 340, 1–5 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.051

Bitla, S., Tripp, C.P., Bousfield, D.W.: A Raman spectroscopic study of migration in paper coatings. J. Pulp Pap. Sci. 29, 382–385 (2003)

Landesfeind, J., Eldiven, A., Gasteiger, H.A.: Influence of the binder on lithium ion battery electrode tortuosity and performance. J. Electrochem. Soc. 165, A1122–A1128 (2018). https://doi.org/10.1149/2.0971805jes

Shim, J., Kostecki, R., Richardson, T., et al.: Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. J. Power Sources 112, 222–230 (2002). https://doi.org/10.1016/S0378-7753(02)00363-4

Mazouzi, D., Lestriez, B., Roué, L., et al.: Silicon composite electrode with high capacity and long cycle life. Electrochem. Solid-State Lett. 12, A215 (2009). https://doi.org/10.1149/1.3212894

Ibing, L., Gallasch, T., Schneider, P., et al.: Towards water based ultra-thick Li ion battery electrodes: a binder approach. J. Power Sources 423, 183–191 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.020

Lee, J.H., Paik, U., Hackley, V.A., et al.: Effect of poly(acrylic acid) on adhesion strength and electrochemical performance of natural graphite negative electrode for lithium-ion batteries. J. Power Sources 161, 612–616 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.087

Michael, M.S., Jacob, M.M.E., Prabaharan, S.R.S., et al.: Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers. Solid State Ionics 98, 167–174 (1997). https://doi.org/10.1016/S0167-2738(97)00117-3

Shi, H., Zhao, Y., Dong, X., et al.: Frustrated crystallisation and hierarchical self-assembly behaviour of comb-like polymers. Chem. Soc. Rev. 42, 2075–2099 (2013). https://doi.org/10.1039/c2cs35350d

Cao, P.F., Naguib, M., Du, Z.J., et al.: Effect of binder architecture on the performance of silicon/graphite composite anodes for lithium ion batteries. ACS Appl. Mater. Interfaces 10, 3470–3478 (2018). https://doi.org/10.1021/acsami.7b13205

Zhou, Z.L., Li, N., Yang, Y.Z., et al.: Ultra-lightweight 3D carbon current collectors: constructing all-carbon electrodes for stable and high energy density dual-ion batteries. Adv. Energy Mater. 8, 1801439 (2018). https://doi.org/10.1002/aenm.201801439

Li, N., Xin, Y.D., Chen, H.S., et al.: Thickness evolution of graphite-based cathodes in the dual ion batteries via in operando optical observation. J. Energy Chem. 29, 122–128 (2019). https://doi.org/10.1016/j.jechem.2018.03.003

Singh, M., Kaiser, J., Hahn, H.: Thick electrodes for high energy lithium ion batteries. J. Electrochem. Soc. 162, A1196–A1201 (2015). https://doi.org/10.1149/2.0401507jes

Yang, G.F., Song, K.Y., Joo, S.K.: Ultra-thick Li-ion battery electrodes using different cell size of metal foam current collectors. RSC Adv. 5, 16702–16706 (2015). https://doi.org/10.1039/C4RA14485F

Zhao, H.P., Lei, Y.: 3D nanostructures for the next generation of high-performance nanodevices for electrochemical energy conversion and storage. Adv. Energy Mater. 10, 2001460 (2020). https://doi.org/10.1002/aenm.202001460

Wang, H., Shao, Y., Mei, S.L., et al.: Polymer-derived heteroatom-doped porous carbon materials. Chem. Rev. 120, 9363–9419 (2020). https://doi.org/10.1021/acs.chemrev.0c00080

Liu, M.Q., Huo, S.L., Xu, M., et al.: Structural engineering of N/S co-doped carbon material as high-performance electrode for supercapacitors. Electrochim. Acta 274, 389–399 (2018). https://doi.org/10.1016/j.electacta.2018.04.084

Jin, H.L., Feng, X., Li, J., et al.: Heteroatom-doped porous carbon materials with unprecedented high volumetric capacitive performance. Angew. Chem. Int. Ed. 58, 2397–2401 (2019). https://doi.org/10.1002/anie.201813686

Ghosh, S., Barg, S., Jeong, S.M., et al.: Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv. Energy Mater. 10, 2001239 (2020). https://doi.org/10.1002/aenm.202001239

Pan, Z.H., Zhi, H.Z., Qiu, Y.C., et al.: Achieving commercial-level mass loading in ternary-doped holey graphene hydrogel electrodes for ultrahigh energy density supercapacitors. Nano Energy 46, 266–276 (2018). https://doi.org/10.1016/j.nanoen.2018.02.007

Zhang, L.P., Niu, J.B., Dai, L.M., et al.: Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells. Langmuir 28, 7542–7550 (2012). https://doi.org/10.1021/la2043262

Kong, X.K., Chen, Q.W., Sun, Z.Y.: Enhanced oxygen reduction reactions in fuel cells on H-decorated and B-substituted graphene. ChemPhysChem 14, 514–519 (2013). https://doi.org/10.1002/cphc.201200918

Denis, P.A., Faccio, R., Mombru, A.W.: Is it possible to dope single-walled carbon nanotubes and graphene with sulfur? ChemPhysChem 10, 715–722 (2009). https://doi.org/10.1002/cphc.200800592

Denis, P.A.: Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur. Chem. Phys. Lett. 492, 251–257 (2010). https://doi.org/10.1016/j.cplett.2010.04.038

Kong, X.K., Chen, C.L., Chen, Q.W.: Doped graphene for metal-free catalysis. Chem. Soc. Rev. 43, 2841–2857 (2014). https://doi.org/10.1039/c3cs60401b

Lai, F.L., Feng, J.R., Heil, T., et al.: Strong metal oxide-support interactions in carbon/hematite nanohybrids activate novel energy storage modes for ionic liquid-based supercapacitors. Energy Storage Mater. 20, 188–195 (2019). https://doi.org/10.1016/j.ensm.2019.04.035

Sahoo, G., Polaki, S.R., Ghosh, S., et al.: Plasma-tuneable oxygen functionalization of vertical graphenes enhance electrochemical capacitor performance. Energy Storage Mater. 14, 297–305 (2018). https://doi.org/10.1016/j.ensm.2018.05.011

Pender, J., Guerrera, J.V., Wygant, B.R., et al.: Carbon nitride transforms into a high lithium storage capacity nitrogen-rich carbon. ACS Nano 13, 9279–9291 (2019). https://doi.org/10.1021/acsnano.9b03861

Kumar, R., Sahoo, S., Joanni, E., et al.: Heteroatom doped graphene engineering for energy storage and conversion. Mater. Today 39, 47–65 (2020). https://doi.org/10.1016/j.mattod.2020.04.010

Sun, Q., He, B., Zhang, X.Q., et al.: Engineering of hollow core-shell interlinked carbon spheres for highly stable lithium-sulfur batteries. ACS Nano 9, 8504–8513 (2015). https://doi.org/10.1021/acsnano.5b03488

Lv, Q., Liu, Y., Ma, T.Y., et al.: Hollow structured silicon anodes with stabilized solid electrolyte interphase film for lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 23501–23506 (2015). https://doi.org/10.1021/acsami.5b05970

Liu, N., Lu, Z.D., Zhao, J., et al.: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014). https://doi.org/10.1038/nnano.2014.6

Pan, L., Huang, H.J., Zhong, M., et al.: Hydrogel-derived foams of nitrogen-doped carbon loaded with Sn nanodots for high-mass-loading Na-ion storage. Energy Storage Mater. 16, 519–526 (2019). https://doi.org/10.1016/j.ensm.2018.09.010

Yao, H.B., Zheng, G.Y., Li, W.Y., et al.: Crab shells as sustainable templates from nature for nanostructured battery electrodes. Nano Lett. 13, 3385–3390 (2013). https://doi.org/10.1021/nl401729r

Zheng, Y.H., Lu, Y.X., Qi, X.G., et al.: Superior electrochemical performance of sodium-ion full-cell using poplar wood derived hard carbon anode. Energy Storage Mater. 18, 269–279 (2019). https://doi.org/10.1016/j.ensm.2018.09.002

Wang, B., Ryu, J., Choi, S., et al.: Folding graphene film yields high areal energy storage in lithium-ion batteries. ACS Nano 12, 1739–1746 (2018). https://doi.org/10.1021/acsnano.7b08489

Xu, X.M., Wu, P.J., Li, Q., et al.: Realizing stable lithium and sodium storage with high areal capacity using novel nanosheet-assembled compact CaV4O9 microflowers. Nano Energy 50, 606–614 (2018). https://doi.org/10.1016/j.nanoen.2018.06.012

Zhu, C., Liu, T., Qian, F., et al.: Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16, 3448–3456 (2016). https://doi.org/10.1021/acs.nanolett.5b04965

Zhu, C., Han, T.Y., Duoss, E.B., et al.: Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015). https://doi.org/10.1038/ncomms7962

Zhao, Z.D., Sun, M.Q., Chen, W.J., et al.: Sandwich, vertical-channeled thick electrodes with high rate and cycle performance. Adv. Funct. Mater. 29, 1809196 (2019). https://doi.org/10.1002/adfm.201809196

Zhu, Y., Ju, Z.Y., Zhang, X., et al.: Evaporation-induced vertical alignment enabling directional ion transport in a 2D-nanosheet-based battery electrode. Adv. Mater. 32, 1907941 (2020). https://doi.org/10.1002/adma.201907941

Bai, Y., Zhou, X.Z., Zhan, C., et al.: 3D hierarchical nano-flake/micro-flower iron fluoride with hydration water induced tunnels for secondary lithium battery cathodes. Nano Energy 32, 10–18 (2017). https://doi.org/10.1016/j.nanoen.2016.12.017

Ni, W., Xue, Y.F., Zang, X.G., et al.: Fluorine doped cagelike carbon electrocatalyst: an insight into the structure-enhanced CO selectivity for CO2 reduction at high overpotential. ACS Nano 14, 2014–2023 (2020). https://doi.org/10.1021/acsnano.9b08528

Zang, X.G., Xue, Y.F., Ni, W., et al.: Enhanced electrosorption ability of carbon nanocages as an advanced electrode material for capacitive deionization. ACS Appl. Mater. Interfaces 12, 2180–2190 (2020). https://doi.org/10.1021/acsami.9b12744

Li, Y., Bai, Y., Wu, C., et al.: Three-dimensional fusiform hierarchical micro/nano Li1.2Ni0.2Mn0.6O2 with a preferred orientation (110) plane as a high energy cathode material for lithium-ion batteries. J. Mater. Chem. A 4, 5942–5951 (2016). https://doi.org/10.1039/C6TA00460A

Zhu, J., Shan, Y., Wang, T., et al.: A hyperaccumulation pathway to three-dimensional hierarchical porous nanocomposites for highly robust high-power electrodes. Nat. Commun. 7, 13432 (2016). https://doi.org/10.1038/ncomms13432

Zhang, S., Zhu, J.Y., Qing, Y., et al.: Ultramicroporous carbons puzzled by graphene quantum dots: Integrated high gravimetric, volumetric, and areal capacitances for supercapacitors. Adv. Funct. Mater. 28, 1805898 (2018). https://doi.org/10.1002/adfm.201805898

Dutta, D., Jiang, J.Y., Jamaluddin, A., et al.: Nanocatalyst-assisted fine tailoring of pore structure in holey-graphene for enhanced performance in energy storage. ACS Appl. Mater. Interfaces 11, 36560–36570 (2019). https://doi.org/10.1021/acsami.9b09927

Fu, K., Yao, Y.G., Dai, J.Q., et al.: Progress in 3D printing of carbon materials for energy-related applications. Adv. Mater. 29, 1603486 (2017). https://doi.org/10.1002/adma.201603486

Barg, S., Perez, F.M., Ni, N., et al.: Mesoscale assembly of chemically modified graphene into complex cellular networks. Nat. Commun. 5, 4328 (2014). https://doi.org/10.1038/ncomms5328

Billaud, J., Bouville, F., Magrini, T., et al.: Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy 1, 16097 (2016). https://doi.org/10.1038/nenergy.2016.97

Li, Y., Wu, C., Bai, Y., et al.: Hierarchical mesoporous lithium-rich Li[Li0.2Ni0.2Mn0.6]O2 cathode material synthesized via ice templating for lithium-ion battery. ACS Appl. Mater. Interfaces 8, 18832–18840 (2016). https://doi.org/10.1021/acsami.6b04687

Li, P., Wang, Y.N., Jeong, J.Y., et al.: Vertically constructed monolithic electrodes for sodium ion batteries: toward low tortuosity and high energy density. J. Mater. Chem. A 7, 25985–25992 (2019). https://doi.org/10.1039/c9ta09644b

Kou, W., Li, X.C., Liu, Y., et al.: Triple-layered carbon-SiO2 composite membrane for high energy density and long cycling Li-S batteries. ACS Nano 13, 5900–5909 (2019). https://doi.org/10.1021/acsnano.9b01703

Zheng, Y., Zhou, T.F., Zhang, C.F., et al.: Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew. Chem. Int. Ed. 55, 3408–3413 (2016). https://doi.org/10.1002/anie.201510978

Zheng, Q., Yi, H.M., Liu, W.Q., et al.: Improving the electrochemical performance of Na3V2(PO4)3 cathode in sodium ion batteries through Ce/V substitution based on rational design and synthesis optimization. Electrochim. Acta 238, 288–297 (2017). https://doi.org/10.1016/j.electacta.2017.04.029

Zheng, Y., Zhou, T.F., Zhao, X.D., et al.: Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv. Mater. 29, 1700396 (2017). https://doi.org/10.1002/adma.201700396

Luo, W., Li, F., Li, Q.D., et al.: Heterostructured Bi2S3-Bi2O3 nanosheets with a built-in electric field for improved sodium storage. ACS Appl. Mater. Interfaces 10, 7201–7207 (2018). https://doi.org/10.1021/acsami.8b01613

Zou, X., Su, J., Silva, R., et al.: Efficient oxygen evolution reaction catalyzed by low-density Ni-doped Co3O4 nanomaterials derived from metal-embedded graphitic C3N4. Chem Commun (Camb) 49, 7522–7524 (2013). https://doi.org/10.1039/c3cc42891e

Ye, L., Zhou, Y.T., Zhao, Y.G., et al.: Engineering oxygen vacancy on iron oxides/hollow carbon cloth electrode toward stable lithium-ion batteries. Chem. Eng. J. 388, 124229 (2020). https://doi.org/10.1016/j.cej.2020.124229

Wu, F., Liu, L., Yuan, Y.F., et al.: Expanding interlayer spacing of hard carbon by natural K+ doping to boost Na-ion storage. ACS Appl. Mater. Interfaces 10, 27030–27038 (2018). https://doi.org/10.1021/acsami.8b08380

Guo, D.L., Qin, J.W., Yin, Z.G., et al.: Achieving high mass loading of Na3V2(PO4)3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries. Nano Energy 45, 136–147 (2018). https://doi.org/10.1016/j.nanoen.2017.12.038

Chen, Y.J., Wang, Y.S., Wang, Z.P., et al.: Densification by compaction as an effective low-cost method to attain a high areal lithium storage capacity in a CNT@Co3O4 sponge. Adv. Energy Mater. 8, 1702981 (2018). https://doi.org/10.1002/aenm.201702981

Chen, J.Z., Xu, J.L., Zhou, S., et al.: Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy 25, 193–202 (2016). https://doi.org/10.1016/j.nanoen.2016.04.037

Zhang, W., Wei, S., Wu, Y., et al.: Poly(ionic liquid)-derived graphitic nanoporous carbon membrane enables superior supercapacitive energy storage. ACS Nano 13, 10261–10271 (2019). https://doi.org/10.1021/acsnano.9b03514

Wu, C.L., Zhang, S., Wu, W., et al.: Carbon nanotubes grown on the inner wall of carbonized wood tracheids for high-performance supercapacitors. Carbon 150, 311–318 (2019). https://doi.org/10.1016/j.carbon.2019.05.032

Li, Y.J., Fu, K., Chen, C.J., et al.: Enabling high-areal-capacity lithium-sulfur batteries: designing anisotropic and low-tortuosity porous architectures. ACS Nano 11, 4801–4807 (2017). https://doi.org/10.1021/acsnano.7b01172

Chodankar, N.R., Patil, S.J., Rama Raju, G.S., et al.: Two-dimensional materials for high-energy solid-state asymmetric pseudocapacitors with high mass loadings. Chemsuschem 13, 1582–1592 (2020). https://doi.org/10.1002/cssc.201902339

Liu, T., Zhou, Z.P., Guo, Y.C., et al.: Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings. Nat. Commun. 10, 675 (2019). https://doi.org/10.1038/s41467-019-08644-w

Zhu, G.X., Xi, C.Y., Liu, Y.J., et al.: CN foam loaded with few-layer graphene nanosheets for high-performance supercapacitor electrodes. J. Mater. Chem. A 3, 7591–7599 (2015). https://doi.org/10.1039/c5ta00837a

Li, H., Yuan, D., Tang, C.H., et al.: Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor. Carbon 100, 151–157 (2016). https://doi.org/10.1016/j.carbon.2015.12.075

Wang, H., Min, S.X., Wang, Q., et al.: Nitrogen-doped nanoporous carbon membranes with Co/CoP Janus-type nanocrystals as hydrogen evolution electrode in both acidic and alkaline environments. ACS Nano 11, 4358–4364 (2017). https://doi.org/10.1021/acsnano.7b01946

Shao, Y., Jiang, Z.P., Zhang, Y.J., et al.: All-poly(ionic liquid) membrane-derived porous carbon membranes: scalable synthesis and application for photothermal conversion in seawater desalination. ACS Nano 12, 11704–11710 (2018). https://doi.org/10.1021/acsnano.8b07526

Shen, F., Luo, W., Dai, J.Q., et al.: Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv. Energy Mater. 6, 1600377 (2016). https://doi.org/10.1002/aenm.201600377

Yousaf, M., Wang, Y.S., Chen, Y.J., et al.: A 3D trilayered CNT/MoSe2/C heterostructure with an expanded MoSe2 interlayer spacing for an efficient sodium storage. Adv. Energy Mater. 9, 1900567 (2019). https://doi.org/10.1002/aenm.201900567

Liu, Y., Fang, Y.J., Zhao, Z.W., et al.: A ternary Fe1−xS@Porous carbon nanowires/reduced graphene oxide hybrid film electrode with superior volumetric and gravimetric capacities for flexible sodium ion batteries. Adv. Energy Mater. 9, 1803052 (2019). https://doi.org/10.1002/aenm.201803052

Li, P., Li, H., Han, D.L., et al.: Packing activated carbons into dense graphene network by capillarity for high volumetric performance supercapacitors. Adv. Sci. 6, 1802355 (2019). https://doi.org/10.1002/advs.201802355

Han, D.L., Weng, Z., Li, P., et al.: Electrode thickness matching for achieving high-volumetric-performance lithium-ion capacitors. Energy Storage Mater. 18, 133–138 (2019). https://doi.org/10.1016/j.ensm.2019.01.020

Cho, S.J., Choi, K.H., Yoo, J.T., et al.: Hetero-nanonet rechargeable paper batteries: toward ultrahigh energy density and origami foldability. Adv. Funct. Mater. 25, 6029–6040 (2015). https://doi.org/10.1002/adfm.201502833

Kim, J.M., Park, C.H., Wu, Q.L., et al.: 1D building blocks-intermingled heteronanomats as a platform architecture for high-performance ultrahigh-capacity lithium-ion battery cathodes. Adv. Energy Mater. 6, 1501594 (2016). https://doi.org/10.1002/aenm.201501594

Cabana, J., Casas-Cabanas, M., Omenya, F.O., et al.: Composition-structure relationships in the Li-ion battery electrode material LiNi0.5Mn1.5O4. Chem. Mater. 24, 2952–2964 (2012). https://doi.org/10.1021/cm301148d

de Biasi, L., Kondrakov, A.O., Geßwein, H., et al.: Between Scylla and Charybdis: balancing among structural stability and energy density of layered NCM cathode materials for advanced lithium-ion batteries. J. Phys. Chem. C 121, 26163–26171 (2017). https://doi.org/10.1021/acs.jpcc.7b06363

Ashton, T.E., Baker, P.J., Bauer, D., et al.: Multiple diffusion pathways in LixNi0.77Co0.14Al0.09O2 (NCA) Li-ion battery cathodes. J. Mater. Chem. A 8, 11545–11552 (2020). https://doi.org/10.1039/D0TA03809A

Kim, S.J., Naguib, M., Zhao, M.Q., et al.: High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries. Electrochim. Acta 163, 246–251 (2015). https://doi.org/10.1016/j.electacta.2015.02.132

Liu, C.Y., Xu, F., Liu, Y.L., et al.: High mass loading ultrathick porous Li4Ti5O12 electrodes with improved areal capacity fabricated via low temperature direct writing. Electrochim. Acta 314, 81–88 (2019). https://doi.org/10.1016/j.electacta.2019.05.082

Haridas, A.K., Gangaja, B., Srikrishnarka, P., et al.: Spray pyrolysis-deposited nanoengineered TiO2 thick films for ultra-high areal and volumetric capacity lithium ion battery applications. J. Power Sources 345, 50–58 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.136

Noelle, D.J., Wang, M., Qiao, Y.: Improved safety and mechanical characterizations of thick lithium-ion battery electrodes structured with porous metal current collectors. J. Power Sources 399, 125–132 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.076

Sotomayor, M.E., Torre-Gamarra, C.D.L., Levenfeld, B., et al.: Ultra-thick battery electrodes for high gravimetric and volumetric energy density Li-ion batteries. J. Power Sources 437, 226923 (2019). https://doi.org/10.1016/j.jpowsour.2019.226923

Sun, C., Liu, S.R., Shi, X.L., et al.: 3D printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery. Chem. Eng. J. 381, 122641 (2020). https://doi.org/10.1016/j.cej.2019.122641

Wang, J.W., Sun, Q., Gao, X.J., et al.: Toward high areal energy and power density electrode for Li-ion batteries via optimized 3D printing approach. ACS Appl. Mater. Interfaces 10, 39794–39801 (2018). https://doi.org/10.1021/acsami.8b14797

Wang, Z.P., Wang, Y.S., Chen, Y.J., et al.: Reticulate dual-nanowire aerogel for multifunctional applications: a high-performance strain sensor and a high areal capacity rechargeable anode. Adv. Funct. Mater. 29, 1807467 (2019). https://doi.org/10.1002/adfm.201807467

Pan, L., Wei, Y.C., Sun, Z.M., et al.: Layered hydrotalcite derived holey porous cobalt oxide nanosheets coated with nitrogen-doped carbon for high-mass-loading Li-ion storage. J. Mater. Chem. A 8, 26150–26157 (2020). https://doi.org/10.1039/d0ta08789k

Tian, T., Lu, L.L., Yin, Y.C., et al.: Multiscale designed niobium titanium oxide anode for fast charging lithium ion batteries. Adv. Funct. Mater. 166, 2007419 (2021). https://doi.org/10.1002/adfm.202007419

Wei, T.S., Ahn, B.Y., Grotto, J., et al.: 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 30, 1703027 (2018). https://doi.org/10.1002/adma.201703027

Li, G., Ouyang, T., Xiong, T.Z., et al.: All-carbon-frameworks enabled thick electrode with exceptional high-areal-capacity for Li-Ion storage. Carbon 174, 1–9 (2021). https://doi.org/10.1016/j.carbon.2020.12.018

Huang, C., Dontigny, M., Zaghib, K., et al.: Low-tortuosity and graded lithium ion battery cathodes by ice templating. J. Mater. Chem. A 7, 21421–21431 (2019). https://doi.org/10.1039/C9TA07269A

Elango, R., Demortière, A., de Andrade, V., et al.: Thick binder-free electrodes for Li-ion battery fabricated using templating approach and spark plasma sintering reveals high areal capacity. Adv. Energy Mater. 8, 1703031 (2018). https://doi.org/10.1002/aenm.201703031

Li, C.C., Zhu, L., Qi, S.Y., et al.: Ultrahigh-areal-capacity battery anodes enabled by free-standing vanadium Nitride@N-doped carbon/graphene architecture. ACS Appl. Mater. Interfaces 12, 49607–49616 (2020). https://doi.org/10.1021/acsami.0c13859

Oh, D.Y., Nam, Y.J., Park, K.H., et al.: Slurry-fabricable Li+-conductive polymeric binders for practical all-solid-state lithium-ion batteries enabled by solvate ionic liquids. Adv. Energy Mater. 9, 1802927 (2019). https://doi.org/10.1002/aenm.201802927

Peled, E., Patolsky, F., Golodnitsky, D., et al.: Tissue-like silicon nanowires-based three-dimensional anodes for high-capacity lithium ion batteries. Nano Lett. 15, 3907–3916 (2015). https://doi.org/10.1021/acs.nanolett.5b00744

Abe, H., Kubota, M., Nemoto, M., et al.: High-capacity thick cathode with a porous aluminium current collector for lithium secondary batteries. J. Power Sources 334, 78–85 (2016). https://doi.org/10.1016/j.jpowsour.2016.10.016

de la Torre-Gamarra, C., Sotomayor, M.E., Sanchez, J.Y., et al.: High mass loading additive-free LiFePO4 cathodes with 500 μm thickness for high areal capacity Li-ion batteries. J. Power Sources 458, 228033 (2020). https://doi.org/10.1016/j.jpowsour.2020.228033

Sotomayor, M.E., de la Torre-Gamarra, C., Bucheli, W., et al.: Additive-free Li4Ti5O12 thick electrodes for Li-ion batteries with high electrochemical performance. J. Mater. Chem. A 6, 5952–5961 (2018). https://doi.org/10.1039/c7ta10683a

Wu, F.X., Yushin, G.: Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 10, 435–459 (2017). https://doi.org/10.1039/c6ee02326f

Ni, Q., Zheng, L.M., Bai, Y., et al.: An extremely fast charging Li3V2(PO4)3 cathode at a 4.8 V cutoff voltage for Li-ion batteries. ACS Energy Lett. 5, 1763–1770 (2020). https://doi.org/10.1021/acsenergylett.0c00702

Liu, H., Zhu, Z., Yan, Q., et al.: A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 585, 63–67 (2020). https://doi.org/10.1038/s41586-020-2637-6

Xu, J.T., Dou, Y.H., Wei, Z.X., et al.: Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Adv. Sci. 4, 1700146 (2017). https://doi.org/10.1002/advs.201700146

Ding, Y.L., Cano, Z.P., Yu, A.P., et al.: Automotive Li-ion batteries: current status and future perspectives. Electrochem. Energy Rev. 2, 1–28 (2019). https://doi.org/10.1007/s41918-018-0022-z

Lu, Y., Yu, L., Lou, X.W.: Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 4, 972–996 (2018). https://doi.org/10.1016/j.chempr.2018.01.003

Aravindan, V., Lee, Y.S., Madhavi, S.: Research progress on negative electrodes for practical Li-ion batteries: beyond carbonaceous anodes. Adv. Energy Mater. 5, 1402225 (2015). https://doi.org/10.1002/aenm.201402225

Nitta, N., Wu, F.X., Lee, J.T., et al.: Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040

Chen, K.H., Namkoong, M.J., Goel, V., et al.: Efficient fast-charging of lithium-ion batteries enabled by laser-patterned three-dimensional graphite anode architectures. J. Power Sources 471, 228475 (2020). https://doi.org/10.1016/j.jpowsour.2020.228475

Yuan, T., Tan, Z.P., Ma, C.R., et al.: Challenges of spinel Li4Ti5O12 for lithium-ion battery industrial applications. Adv. Energy Mater. 7, 1601625 (2017). https://doi.org/10.1002/aenm.201601625

Li, H., Guo, S.T., Wang, L.B., et al.: Thermally durable lithium-ion capacitors with high energy density from all hydroxyapatite nanowire-enabled fire-resistant electrodes and separators. Adv. Energy Mater. 9, 1902497 (2019). https://doi.org/10.1002/aenm.201902497

Wang, Y., Luo, S.N., Chen, M., et al.: Uniformly confined germanium quantum dots in 3D ordered porous carbon framework for high-performance Li-ion battery. Adv. Funct. Mater. 30, 2000373 (2020). https://doi.org/10.1002/adfm.202000373

Yan, Y.H., Xu, H.Y., Peng, C.X., et al.: 3D phosphorus-carbon electrode with aligned nanochannels promise high-areal-capacity and cyclability in lithium-ion battery. Appl. Surf. Sci. 489, 734–740 (2019). https://doi.org/10.1016/j.apsusc.2019.05.329

Wang, L., Liu, T.F., Peng, X., et al.: Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Funct. Mater. 28, 1704858 (2018). https://doi.org/10.1002/adfm.201704858

Evanoff, K., Khan, J., Balandin, A.A., et al.: Towards ultrathick battery electrodes: aligned carbon nanotube-enabled architecture. Adv. Mater. 24, 533–537 (2012). https://doi.org/10.1002/adma.201103044

Lim, E., Jo, C., Kim, H., et al.: Facile synthesis of Nb2O5@Carbon core-shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano 9, 7497–7505 (2015). https://doi.org/10.1021/acsnano.5b02601

Wang, X.L., Li, G., Chen, Z., et al.: High-performance supercapacitors based on nanocomposites of Nb2O5 nanocrystals and carbon nanotubes. Adv. Energy Mater. 1, 1089–1093 (2011). https://doi.org/10.1002/aenm.201100332

Wang, X., Yan, C.Y., Yan, J., et al.: Orthorhombic niobium oxide nanowires for next generation hybrid supercapacitor device. Nano Energy 11, 765–772 (2015). https://doi.org/10.1016/j.nanoen.2014.11.020

Sun, H., Mei, L., Liang, J., et al.: Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017). https://doi.org/10.1126/science.aam5852

Sun, P.C., Davis, J., Cao, L.X., et al.: High capacity 3D structured tin-based electroplated Li-ion battery anodes. Energy Storage Mater. 17, 151–156 (2019). https://doi.org/10.1016/j.ensm.2018.11.017

Zhao, Y.T., Huang, G.S., Li, Y.L., et al.: Three-dimensional carbon/ZnO nanomembrane foam as an anode for lithium-ion battery with long-life and high areal capacity. J. Mater. Chem. A 6, 7227–7235 (2018). https://doi.org/10.1039/c8ta00940f

Kim, C., Hwang, G., Jung, J.W., et al.: Fast, scalable synthesis of micronized Ge3N4@C with a high tap density for excellent lithium storage. Adv. Funct. Mater. 27, 1605975 (2017). https://doi.org/10.1002/adfm.201605975

Liang, J.F., Sun, H.T., Zhao, Z.P., et al.: Ultra-high areal capacity realized in three-dimensional holey graphene/SnO2 composite anodes. iScience 19, 728–736 (2019). https://doi.org/10.1016/j.isci.2019.08.025

Song, J.X., Zhou, M.J., Yi, R., et al.: Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Funct. Mater. 24, 5904–5910 (2014). https://doi.org/10.1002/adfm.201401269

Luo, W., Chen, X.Q., Xia, Y., et al.: Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv. Energy Mater. 7, 1701083 (2017). https://doi.org/10.1002/aenm.201701083

Zhou, M., Li, X.L., Wang, B., et al.: High-performance silicon battery anodes enabled by engineering graphene assemblies. Nano Lett. 15, 6222–6228 (2015). https://doi.org/10.1021/acs.nanolett.5b02697

Koo, B., Kim, H., Cho, Y., et al.: A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem. Int. Ed. 51, 8762–8767 (2012). https://doi.org/10.1002/anie.201201568

Bie, Y.T., Yang, J., Liu, X.L., et al.: Polydopamine wrapping silicon cross-linked with polyacrylic acid as high-performance anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 8, 2899–2904 (2016). https://doi.org/10.1021/acsami.5b10616

Wang, J., Meng, X.C., Fan, X.L., et al.: Scalable synthesis of defect abundant Si nanorods for high-performance Li-ion battery anodes. ACS Nano 9, 6576–6586 (2015). https://doi.org/10.1021/acsnano.5b02565

Xu, Q., Li, J.Y., Sun, J.K., et al.: Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv. Energy Mater. 7, 1601481 (2017). https://doi.org/10.1002/aenm.201601481

Xu, Q., Sun, J.K., Li, J.Y., et al.: Scalable synthesis of spherical Si/C granules with 3D conducting networks as ultrahigh loading anodes in lithium-ion batteries. Energy Storage Mater. 12, 54–60 (2018). https://doi.org/10.1016/j.ensm.2017.11.015

Li, X., Gu, M., Hu, S., et al.: Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 5, 4105 (2014). https://doi.org/10.1038/ncomms5105

Lyu, Y.C., Wu, X., Wang, K., et al.: An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202000982

Wang, J.J., Sun, X.L.: Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ. Sci. 8, 1110–1138 (2015). https://doi.org/10.1039/C4EE04016C

Kang, Y.S., Kim, D.Y., Yoon, J., et al.: Shape control of hierarchical lithium cobalt oxide using biotemplates for connected nanoparticles. J. Power Sources 436, 226836 (2019). https://doi.org/10.1016/j.jpowsour.2019.226836

Shi, B.H., Shang, Y.Y., Pei, Y., et al.: Low tortuous, highly conductive, and high-areal-capacity battery electrodes enabled by through-thickness aligned carbon fiber framework. Nano Lett. 20, 5504–5512 (2020). https://doi.org/10.1021/acs.nanolett.0c02053

Wu, X.S., Xia, S.X., Huang, Y.Q., et al.: High-performance, low-cost, and dense-structure electrodes with high mass loading for lithium-ion batteries. Adv. Funct. Mater. 29, 1903961 (2019). https://doi.org/10.1002/adfm.201903961

Li, Y., Chen, M.H., Liu, B., et al.: Heteroatom doping: an effective way to boost sodium ion storage. Adv. Energy Mater. 10, 2000927 (2020). https://doi.org/10.1002/aenm.202000927

Lao, M.M., Zhang, Y., Luo, W.B., et al.: Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater. 29, 1700622 (2017). https://doi.org/10.1002/adma.201700622

Saurel, D., Orayech, B., Xiao, B.W., et al.: From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv. Energy Mater. 8, 1703268 (2018). https://doi.org/10.1002/aenm.201703268

Xu, C.Y., Kou, X.D., Cao, B.K., et al.: Hierarchical graphene@TiO2 sponges for sodium-ion storage with high areal capacity and robust stability. Electrochim. Acta 355, 136782 (2020). https://doi.org/10.1016/j.electacta.2020.136782

Liu, L.L., Qi, X.G., Ma, Q., et al.: Toothpaste-like electrode: a novel approach to optimize the interface for solid-state sodium-ion batteries with ultralong cycle life. ACS Appl. Mater. Interfaces 8, 32631–32636 (2016). https://doi.org/10.1021/acsami.6b11773

He, Y.W., Bai, P.X., Gao, S.Y., et al.: Marriage of an ether-based electrolyte with hard carbon anodes creates superior sodium-ion batteries with high mass loading. ACS Appl. Mater. Interfaces 10, 41380–41388 (2018). https://doi.org/10.1021/acsami.8b15274

Fu, H., Xu, Z.W., Li, R.Z., et al.: Network carbon with macropores from apple pomace for stable and high areal capacity of sodium storage. ACS Sustain. Chem. Eng. 6, 14751–14758 (2018). https://doi.org/10.1021/acssuschemeng.8b03297

Yang, T., Niu, X., Qian, T., et al.: Half and full sodium-ion batteries based on maize with high-loading density and long-cycle life. Nanoscale 8, 15497–15504 (2016). https://doi.org/10.1039/c6nr04424g

Yu, S.C., Liu, Z.G., Tempel, H., et al.: Self-standing NASICON-type electrodes with high mass loading for fast-cycling all-phosphate sodium-ion batteries. J. Mater. Chem. A 6, 18304–18317 (2018). https://doi.org/10.1039/C8TA07313A

Yousaf, M., Wang, Z.P., Wang, Y.S., et al.: Core-shell FeSe2/C nanostructures embedded in a carbon framework as a free standing anode for a sodium ion battery. Small 16, 2002200 (2020). https://doi.org/10.1002/smll.202002200

Liu, Y.P., He, X.Y., Hanlon, D., et al.: Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries. ACS Nano 10, 8821–8828 (2016). https://doi.org/10.1021/acsnano.6b04577

Wang, H.Q., Wang, R.H., Song, Z.H., et al.: A novel aqueous Li+ (or Na+)/Br− hybrid-ion battery with super high areal capacity and energy density. J. Mater. Chem. A 7, 13050–13059 (2019). https://doi.org/10.1039/C9TA03212F

Li, L., Zheng, Y., Zhang, S.L., et al.: Recent progress on sodium ion batteries: potential high-performance anodes. Energy Environ. Sci. 11, 2310–2340 (2018). https://doi.org/10.1039/C8EE01023D

Li, Z.F., Zheng, Y., Liu, Q.Y., et al.: Recent advances in nanostructured metal phosphides as promising anode materials for rechargeable batteries. J. Mater. Chem. A 8, 19113–19132 (2020). https://doi.org/10.1039/D0TA06533A

Li, Y., Xu, Y.H., Wang, Z.H., et al.: Stable carbon-selenium bonds for enhanced performance in tremella-like 2D chalcogenide battery anode. Adv. Energy Mater. 8, 1800927 (2018). https://doi.org/10.1002/aenm.201800927

Wu, F., Zhang, M.H., Bai, Y., et al.: Lotus seedpod-derived hard carbon with hierarchical porous structure as stable anode for sodium-ion batteries. ACS Appl. Mater. Interfaces 11, 12554–12561 (2019). https://doi.org/10.1021/acsami.9b01419

Wang, Q.D., Zhao, C.L., Lu, Y.X., et al.: Advanced nanostructured anode materials for sodium-ion batteries. Small 13, 1701835 (2017). https://doi.org/10.1002/smll.201701835

Wang, Z.H., Wang, X.R., Bai, Y., et al.: Developing an interpenetrated porous and ultrasuperior hard-carbon anode via a promising molten-salt evaporation method. ACS Appl. Mater. Interfaces 12, 2481–2489 (2020). https://doi.org/10.1021/acsami.9b18495

Li, Y., Yuan, Y.F., Bai, Y., et al.: Insights into the Na+ storage mechanism of phosphorus-functionalized hard carbon as ultrahigh capacity anodes. Adv. Energy Mater. 8, 1702781 (2018). https://doi.org/10.1002/aenm.201702781

Yu, K.H., Zhao, H.C., Wang, X.R., et al.: Hyperaccumulation route to Ca-rich hard carbon materials with cation self-incorporation and interlayer spacing optimization for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 12, 10544–10553 (2020). https://doi.org/10.1021/acsami.9b22745

Li, X., Sun, X.H., Hu, X.D., et al.: Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy 77, 105143 (2020). https://doi.org/10.1016/j.nanoen.2020.105143

Xiong, P.X., Bai, P.X., Li, A., et al.: Bismuth Nanoparticle@Carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries. Adv. Mater. 31, 1904771 (2019). https://doi.org/10.1002/adma.201904771

Han, L., Wang, J., Mu, X., et al.: Anisotropic, low-tortuosity and ultra-thick red P@C-Wood electrodes for sodium-ion batteries. Nanoscale 12, 14642–14650 (2020). https://doi.org/10.1039/d0nr03059g

Park, J., Lee, M., Feng, D.W., et al.: Stabilization of hexaaminobenzene in a 2D conductive metal-organic framework for high power sodium storage. J. Am. Chem. Soc. 140, 10315–10323 (2018). https://doi.org/10.1021/jacs.8b06020

Yu, K.H., Wang, X.R., Yang, H.Y., et al.: Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries. J. Energy Chem. 55, 499–508 (2021). https://doi.org/10.1016/j.jechem.2020.07.025

Liu, X.X., Tan, Y.C., Liu, T.C., et al.: A simple electrode-level chemical presodiation route by solution spraying to improve the energy density of sodium-ion batteries. Adv. Funct. Mater. 29, 1903795 (2019). https://doi.org/10.1002/adfm.201903795

Ni, Q., Dong, R.Q., Bai, Y., et al.: Superior sodium-storage behavior of flexible anatase TiO2 promoted by oxygen vacancies. Energy Storage Mater. 25, 903–911 (2020). https://doi.org/10.1016/j.ensm.2019.09.001

Ni, Q., Bai, Y., Guo, S.N., et al.: Carbon nanofiber elastically confined nanoflowers: a highly efficient design for molybdenum disulfide-based flexible anodes toward fast sodium storage. ACS Appl. Mater. Interfaces 11, 5183–5192 (2019). https://doi.org/10.1021/acsami.8b21729

Zhang, Z.Y., Yoshikawa, H., Awaga, K.: Monitoring the solid-state electrochemistry of Cu(2, 7-AQDC) (AQDC = anthraquinone dicarboxylate) in a lithium battery: coexistence of metal and ligand redox activities in a metal-organic framework. J. Am. Chem. Soc. 136, 16112–16115 (2014). https://doi.org/10.1021/ja508197w

Sun, L., Campbell, M.G., Dincă, M.: Electrically conductive porous metal-organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016). https://doi.org/10.1002/anie.201506219

Gao, L., Chen, S., Zhang, L.L., et al.: Self-supported Na0.7CoO2 nanosheet arrays as cathodes for high performance sodium ion batteries. J. Power Sources 396, 379–385 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.047

Gao, L., Chen, S., Zhang, L.L., et al.: High areal capacity Na0.67CoO2 bundle array cathode tailored for high-performance sodium-ion batteries. ChemElectroChem 6, 947–952 (2019). https://doi.org/10.1002/celc.201900031

Wang, X.P., Wang, C.Y., Han, K., et al.: A synergistic Na-Mn-O composite cathodes for high-capacity Na-ion storage. Adv. Energy Mater. 8, 1802180 (2018). https://doi.org/10.1002/aenm.201802180

Lv, Z., Ling, M.X., Yi, H.M., et al.: Electrode design for high-performance sodium-ion batteries: coupling nanorod-assembled Na3V2(PO4)3@C microspheres with a 3D conductive charge transport network. ACS Appl. Mater. Interfaces 12, 13869–13877 (2020). https://doi.org/10.1021/acsami.9b22746

Xiang, X.D., Zhang, K., Chen, J.: Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 27, 5343–5364 (2015). https://doi.org/10.1002/adma.201501527

Kang, S.M., Park, J.H., Jin, A.H., et al.: Na+/vacancy disordered P2-Na0.67Co1−xTixO2: high-energy and high-power cathode materials for sodium ion batteries. ACS Appl. Mater. Interfaces 10, 3562–3570 (2018). https://doi.org/10.1021/acsami.7b16077

Du, K., Zhu, J.Y., Hu, G.R., et al.: Exploring reversible oxidation of oxygen in a manganese oxide. Energy Environ. Sci. 9, 2575–2577 (2016). https://doi.org/10.1039/c6ee01367h

Li, H., Bai, Y., Wu, F., et al.: Na-rich Na3+xV2−xNix(PO4)3/C for sodium ion batteries: controlling the doping site and improving the electrochemical performances. ACS Appl. Mater. Interfaces 8, 27779–27787 (2016). https://doi.org/10.1021/acsami.6b09898

Ni, Q., Bai, Y., Wu, F., et al.: Polyanion-type electrode materials for sodium-ion batteries. Adv. Sci. 4, 1600275 (2017). https://doi.org/10.1002/advs.201600275

Wu, F., Zhu, N., Bai, Y., et al.: Unveil the mechanism of solid electrolyte interphase on Na3V2(PO4)3 formed by a novel NaPF6/BMITFSI ionic liquid electrolyte. Nano Energy 51, 524–532 (2018). https://doi.org/10.1016/j.nanoen.2018.07.003

Ni, Q., Bai, Y., Li, Y., et al.: 3D electronic channels wrapped large-sized Na3V2(PO4)3 as flexible electrode for sodium-ion batteries. Small 14, 1702864 (2018). https://doi.org/10.1002/smll.201702864

Hwang, J.Y., Myung, S.T., Sun, Y.K.: Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 28, 1802938 (2018). https://doi.org/10.1002/adfm.201802938

Kim, H., Kim, J.C., Bianchini, M., et al.: Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 8, 1702384 (2018). https://doi.org/10.1002/aenm.201702384

Wei, S.Y., Choudhury, S., Tu, Z.Y., et al.: Electrochemical interphases for high-energy storage using reactive metal anodes. Acc. Chem. Res. 51, 80–88 (2018). https://doi.org/10.1021/acs.accounts.7b00484

Fan, L., Ma, R.F., Zhang, Q.F., et al.: Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem. Int. Ed. 131, 10610–10615 (2019). https://doi.org/10.1002/ange.201904258

Fan, L., Chen, S.H., Ma, R.F., et al.: Ultrastable potassium storage performance realized by highly effective solid electrolyte interphase layer. Small 14, 1801806 (2018). https://doi.org/10.1002/smll.201801806

Wu, Z.B., Liang, G.M., Pang, W.K., et al.: Coupling topological insulator SnSb2Te4 nanodots with highly doped graphene for high-rate energy storage. Adv. Mater. 32, 1905632 (2020). https://doi.org/10.1002/adma.201905632

Yao, K., Xu, Z.W., Ma, M., et al.: Densified metallic MoS2/graphene enabling fast potassium-ion storage with superior gravimetric and volumetric capacities. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202004244

Zhang, C., Lyu, R.Y., Lv, W., et al.: A lightweight 3D Cu nanowire network with phosphidation gradient as current collector for high-density nucleation and stable deposition of lithium. Adv. Mater. 31, 1904991 (2019). https://doi.org/10.1002/adma.201904991

Sun, Z.W., Jin, S., Jin, H.C., et al.: Robust expandable carbon nanotube scaffold for ultrahigh-capacity lithium-metal anodes. Adv. Mater. 30, 1800884 (2018). https://doi.org/10.1002/adma.201800884

Song, H.Y., Chen, X.L., Zheng, G.L., et al.: Dendrite-free composite Li anode assisted by Ag nanoparticles in a wood-derived carbon frame. ACS Appl. Mater. Interfaces 11, 18361–18367 (2019). https://doi.org/10.1021/acsami.9b01694

Deng, W., Zhu, W.H., Zhou, X.F., et al.: Regulating capillary pressure to achieve ultralow areal mass loading metallic lithium anodes. Energy Storage Mater. 23, 693–700 (2019). https://doi.org/10.1016/j.ensm.2019.02.027

Zheng, J., Kim, M.S., Tu, Z., et al.: Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chem. Soc. Rev. 49, 2701–2750 (2020). https://doi.org/10.1039/c9cs00883g

Wu, F., Yuan, Y.X., Cheng, X.B., et al.: Perspectives for restraining harsh lithium dendrite growth: towards robust lithium metal anodes. Energy Storage Mater. 15, 148–170 (2018). https://doi.org/10.1016/j.ensm.2018.03.024

Yuan, Y.X., Wu, F., Bai, Y., et al.: Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode. Energy Storage Mater. 16, 411–418 (2019). https://doi.org/10.1016/j.ensm.2018.06.022

Huang, A., Liu, H.D., Manor, O., et al.: Enabling rapid charging lithium metal batteries via surface acoustic wave-driven electrolyte flow. Adv. Mater. 32, 1907516 (2020). https://doi.org/10.1002/adma.201907516

Kim, P.J., Pol, V.G.: High performance lithium metal batteries enabled by surface tailoring of polypropylene separator with a polydopamine/graphene layer. Adv. Energy Mater. 8, 1802665 (2018). https://doi.org/10.1002/aenm.201802665

Liu, H.D., Yue, X.J., Xing, X., et al.: A scalable 3D lithium metal anode. Energy Storage Mater. 16, 505–511 (2019). https://doi.org/10.1016/j.ensm.2018.09.021

Liu, H.D., Wang, X.F., Zhou, H.Y., et al.: Structure and solution dynamics of lithium methyl carbonate as a protective layer for lithium metal. ACS Appl. Energy Mater. 1, 1864–1869 (2018). https://doi.org/10.1021/acsaem.8b00348

Zhou, H.Y., Yu, S.C., Liu, H.D., et al.: Protective coatings for lithium metal anodes: recent progress and future perspectives. J. Power Sources 450, 227632 (2020). https://doi.org/10.1016/j.jpowsour.2019.227632

Yu, L., Chen, S.R., Lee, H., et al.: A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries. ACS Energy Lett. 3, 2059–2067 (2018). https://doi.org/10.1021/acsenergylett.8b00935

Zhang, C., Lv, W., Zhou, G.M., et al.: Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries. Adv. Energy Mater. 8, 1703404 (2018). https://doi.org/10.1002/aenm.201703404

Jin, C.B., Sheng, O.W., Luo, J.M., et al.: 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy 37, 177–186 (2017). https://doi.org/10.1016/j.nanoen.2017.05.015

Zhang, Y., Luo, W., Wang, C., et al.: High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proc. Natl. Acad. Sci. U. S. A. 114, 3584–3589 (2017). https://doi.org/10.1073/pnas.1618871114

Yang, G., Tan, J., Jin, H., et al.: Creating effective nanoreactors on carbon nanotubes with mechanochemical treatments for high-areal-capacity sulfur cathodes and lithium anodes. Adv. Funct. Mater. 28, 1800595 (2018). https://doi.org/10.1002/adfm.201800595

Yao, Y., Wang, H.Y., Yang, H., et al.: A dual-functional conductive framework embedded with TiN-VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li–S full batteries. Adv. Mater. 32, 1905658 (2020). https://doi.org/10.1002/adma.201905658

Zhou, Z.F., Chen, B.B., Fang, T.T., et al.: A multifunctional separator enables safe and durable lithium/magnesium-sulfur batteries under elevated temperature. Adv. Energy Mater. 10, 1902023 (2020). https://doi.org/10.1002/aenm.201902023

Chung, S.H., Manthiram, A.: Designing lithium-sulfur cells with practically necessary parameters. Joule 2, 710–724 (2018). https://doi.org/10.1016/j.joule.2018.01.002

Fu, K.K., Gong, Y.H., Hitz, G.T., et al.: Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ. Sci. 10, 1568–1575 (2017). https://doi.org/10.1039/c7ee01004d

Peng, H.J., Huang, J.Q., Cheng, X.B., et al.: Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. 7, 1700260 (2017). https://doi.org/10.1002/aenm.201700260

Hu, Y., Chen, W., Lei, T., et al.: Strategies toward high-loading lithium–sulfur battery. Adv. Energy Mater. 10, 2000082 (2020). https://doi.org/10.1002/aenm.202000082

Rana, M., Ahad, S.A., Li, M., et al.: Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading. Energy Storage Mater. 18, 289–310 (2019). https://doi.org/10.1016/j.ensm.2018.12.024

Qu, H.T., Zhang, J.J., Du, A.B., et al.: Multifunctional sandwich-structured electrolyte for high-performance lithium–sulfur batteries. Adv. Sci. 5, 1700503 (2018). https://doi.org/10.1002/advs.201700503

Zhang, S.G., Ueno, K., Dokko, K., et al.: Recent advances in electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 5, 1500117 (2015). https://doi.org/10.1002/aenm.201500117

Chen, G.H., Zhang, K., Liu, Y.R., et al.: Flame-retardant gel polymer electrolyte and interface for quasi-solid-state sodium ion batteries. Chem. Eng. J. 401, 126065 (2020). https://doi.org/10.1016/j.cej.2020.126065

Gao, Y.S., Chen, G.H., Wang, X.R., et al.: PY13FSI-infiltrated SBA-15 as nonflammable and high ion-conductive ionogel electrolytes for quasi-solid-state sodium-ion batteries. ACS Appl. Mater. Interfaces 12, 22981–22991 (2020). https://doi.org/10.1021/acsami.0c04878

Wu, F., Zhang, K., Liu, Y.R., et al.: Polymer electrolytes and interfaces toward solid-state batteries: recent advances and prospects. Energy Storage Mater. 33, 26–54 (2020). https://doi.org/10.1016/j.ensm.2020.08.002

Chen, G.H., Ye, L., Zhang, K., et al.: Hyperbranched polyether boosting ionic conductivity of polymer electrolytes for all-solid-state sodium ion batteries. Chem. Eng. J. 394, 124885 (2020). https://doi.org/10.1016/j.cej.2020.124885

Wang, C.W., Fu, K., Kammampata, S.P., et al.: Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120, 4257–4300 (2020). https://doi.org/10.1021/acs.chemrev.9b00427

Liu, J., Zhou, J.Q., Wang, M.F., et al.: A functional-gradient-structured ultrahigh modulus solid polymer electrolyte for all-solid-state lithium metal batteries. J. Mater. Chem. A 7, 24477–24485 (2019). https://doi.org/10.1039/C9TA07876B

Kwak, W.J., Rosy, D.S., et al.: Lithium-oxygen batteries and related systems: potential, status, and future. Chem. Rev. 120, 6626–6683 (2020). https://doi.org/10.1021/acs.chemrev.9b00609

Lin, Y., Moitoso, B., Martinez-Martinez, C., et al.: Ultrahigh-capacity lithium-oxygen batteries enabled by dry-pressed holey graphene air cathodes. Nano Lett. 17, 3252–3260 (2017). https://doi.org/10.1021/acs.nanolett.7b00872

Song, H.Y., Xu, S.M., Li, Y.J., et al.: Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium-oxygen batteries. Adv. Energy Mater. 8, 1701203 (2018). https://doi.org/10.1002/aenm.201701203

Lee, Y., Park, S.H., Kim, S.H., et al.: High-rate and high-areal-capacity air cathodes with enhanced cycle life based on RuO2/MnO2 bifunctional electrocatalysts supported on CNT for pragmatic Li-O2 batteries. ACS Catal. 8, 2923–2934 (2018). https://doi.org/10.1021/acscatal.8b00248

Lacey, S.D., Walsh, E.D., Hitz, E., et al.: Highly compressible, binderless and ultrathick holey graphene-based electrode architectures. Nano Energy 31, 386–392 (2017). https://doi.org/10.1016/j.nanoen.2016.11.005

Zhu, C.L., Du, L., Luo, J.M., et al.: A renewable wood-derived cathode for Li-O2 batteries. J. Mater. Chem. A 6, 14291–14298 (2018). https://doi.org/10.1039/c8ta04703k

Xu, S.M., Chen, C.J., Kuang, Y.D., et al.: Flexible lithium-CO2 battery with ultrahigh capacity and stable cycling. Energy Environ. Sci. 11, 3231–3237 (2018). https://doi.org/10.1039/C8EE01468J

Qiao, Y., Liu, Y., Chen, C.J., et al.: 3D-printed graphene oxide framework with thermal shock synthesized nanoparticles for Li-CO2 batteries. Adv. Funct. Mater. 28, 1805899 (2018). https://doi.org/10.1002/adfm.201805899

Zhao, T., Zhang, G.M., Zhou, F.S., et al.: Toward tailorable Zn-ion textile batteries with high energy density and ultrafast capability: building high-performance textile electrode in 3D hierarchical branched design. Small 14, 1802320 (2018). https://doi.org/10.1002/smll.201802320

Jiao, T.P., Yang, Q., Wu, S.L., et al.: Binder-free hierarchical VS2 electrodes for high-performance aqueous Zn ion batteries towards commercial level mass loading. J. Mater. Chem. A 7, 16330–16338 (2019). https://doi.org/10.1039/C9TA04798K

Zhang, W., Liang, S.Q., Fang, G.Z., et al.: Ultra-high mass-loading cathode for aqueous zinc-ion battery based on graphene-wrapped aluminum vanadate nanobelts. Nano-Micro Lett. 11, 1–12 (2019). https://doi.org/10.1007/s40820-019-0300-2

Wei, T.Y., Li, Q., Yang, G.Z., et al.: Pseudo-Zn-air and Zn-ion intercalation dual mechanisms to realize high-areal capacitance and long-life energy storage in aqueous Zn battery. Adv. Energy Mater. 9, 1901480 (2019). https://doi.org/10.1002/aenm.201901480

Zhang, H.Z., Fang, Y.B., Yang, F., et al.: Aromatic organic molecular crystal with enhanced π–π stacking interaction for ultrafast Zn-ion storage. Energy Environ. Sci. 13, 2515–2523 (2020). https://doi.org/10.1039/d0ee01723j

Ni, Q., Jiang, H., Sandstrom, S., et al.: A Na3V2(PO4)2O1.6F1.4 cathode of Zn-ion battery enabled by a water-in-bisalt electrolyte. Adv. Funct. Mater. 30, 2003511 (2020). https://doi.org/10.1002/adfm.202003511

Yu, P., Zeng, Y.X., Zhang, H.Z., et al.: Flexible Zn-ion batteries: Recent progresses and challenges. Small 15, 1804760 (2019). https://doi.org/10.1002/smll.201804760

Song, M., Tan, H., Chao, D.L., et al.: Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018). https://doi.org/10.1002/adfm.201802564

Wang, Y.R., Wang, C.X., Ni, Z.G., et al.: Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc-organic batteries. Adv. Mater. 32, 2000338 (2020). https://doi.org/10.1002/adma.202000338

Xing, L.L., Owusu, K.A., Liu, X.Y., et al.: Insights into the storage mechanism of VS4 nanowire clusters in aluminum-ion battery. Nano Energy 79, 105384 (2021). https://doi.org/10.1016/j.nanoen.2020.105384

Wang, H.L., Gu, S.C., Bai, Y., et al.: Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries. J. Mater. Chem. A 3, 22677–22686 (2015). https://doi.org/10.1039/C5TA06187C

Zhang, Y., Liu, S.Q., Ji, Y.J., et al.: Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives. Adv. Mater. 30, 1706310 (2018). https://doi.org/10.1002/adma.201706310

Wu, F., Yang, H.Y., Bai, Y., et al.: Paving the path toward reliable cathode materials for aluminum-ion batteries. Adv. Mater. 31, 1806510 (2019). https://doi.org/10.1002/adma.201806510

Gu, S.C., Wang, H.L., Wu, C., et al.: Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Mater. 6, 9–17 (2017). https://doi.org/10.1016/j.ensm.2016.09.001

Zhu, N., Wu, F., Wang, Z.H., et al.: Reversible Al3+ storage mechanism in anatase TiO2 cathode material for ionic liquid electrolyte-based aluminum-ion batteries. J. Energy Chem. 51, 72–80 (2020). https://doi.org/10.1016/j.jechem.2020.03.032

Dong, X.Z., Xu, H.Y., Chen, H., et al.: Commercial expanded graphite as high-performance cathode for low-cost aluminum-ion battery. Carbon 148, 134–140 (2019). https://doi.org/10.1016/j.carbon.2019.03.080

Muñoz-Torrero, D., Molina, A., Palma, J., et al.: Widely commercial carbonaceous materials as cathode for Al-ion batteries. Carbon 167, 475–484 (2020). https://doi.org/10.1016/j.carbon.2020.06.019

Park, J., Xu, Z.L., Yoon, G., et al.: Stable and high-power calcium-ion batteries enabled by calcium intercalation into graphite. Adv. Mater. 32, 1904411 (2020). https://doi.org/10.1002/adma.201904411

Cheng, X., Zhang, Z., Kong, Q., et al.: Highly reversible cuprous mediated cathode chemistry for magnesium batteries. Angew Chem Int Ed Engl 59, 11477–11482 (2020). https://doi.org/10.1002/anie.202002177

Gummow, R.J., Vamvounis, G., Kannan, M.B., et al.: Calcium-ion batteries: current state-of-the-art and future perspectives. Adv. Mater. 30, 1801702 (2018). https://doi.org/10.1002/adma.201801702

Murata, Y., Takada, S., Obata, T., et al.: Effect of water in electrolyte on the Ca2+ insertion/extraction properties of V2O5. Electrochim. Acta 294, 210–216 (2019). https://doi.org/10.1016/j.electacta.2018.10.103

Zhang, Y.F., Geng, H.B., Wei, W.F., et al.: Challenges and recent progress in the design of advanced electrode materials for rechargeable Mg batteries. Energy Storage Mater. 20, 118–138 (2019). https://doi.org/10.1016/j.ensm.2018.11.033

Yoo, H.D., Shterenberg, I., Gofer, Y., et al.: Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 6, 2265 (2013). https://doi.org/10.1039/c3ee40871j

Aravindan, V., Gnanaraj, J., Lee, Y.S., et al.: Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem. Rev. 114, 11619–11635 (2014). https://doi.org/10.1021/cr5000915

Wang, X., Kajiyama, S., Iinuma, H., et al.: Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 6, 6544 (2015). https://doi.org/10.1038/ncomms7544

Yang, J.L., Ju, Z.C., Jiang, Y., et al.: Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30, 1700104 (2018). https://doi.org/10.1002/adma.201700104

Song, Z.Q., Li, W.Y., Bao, Y., et al.: A new route to tailor high mass loading all-solid-state supercapacitor with ultra-high volumetric energy density. Carbon 136, 46–53 (2018). https://doi.org/10.1016/j.carbon.2018.04.036

Vijayakumar, M., Santhosh, R., Adduru, J., et al.: Activated carbon fibres as high performance supercapacitor electrodes with commercial level mass loading. Carbon 140, 465–476 (2018). https://doi.org/10.1016/j.carbon.2018.08.052

Wu, L.L., Liu, M.Q., Huo, S.L., et al.: Mold-casting prepared free-standing activated carbon electrodes for capacitive deionization. Carbon 149, 627–636 (2019). https://doi.org/10.1016/j.carbon.2019.04.102

Ma, X.L., Song, X.Y., Yu, Z.Q., et al.: S-doping coupled with pore-structure modulation to conducting carbon black: toward high mass loading electrical double-layer capacitor. Carbon 149, 646–654 (2019). https://doi.org/10.1016/j.carbon.2019.04.110

Liu, L.Y., Wang, X.H., Izotov, V., et al.: Capacitance of coarse-grained carbon electrodes with thickness up to 800 μm. Electrochim. Acta 302, 38–44 (2019). https://doi.org/10.1016/j.electacta.2019.02.004

Huang, T.Q., Chu, X.Y., Cai, S.Y., et al.: Tri-high designed graphene electrodes for long cycle-life supercapacitors with high mass loading. Energy Storage Mater. 17, 349–357 (2019). https://doi.org/10.1016/j.ensm.2018.07.001

Yuan, G., Liang, Y.R., Hu, H., et al.: Extraordinary thickness-independent electrochemical energy storage enabled by cross-linked microporous carbon nanosheets. ACS Appl. Mater. Interfaces 11, 26946–26955 (2019). https://doi.org/10.1021/acsami.9b06402

Song, Y., Liu, T., Yao, B., et al.: Ostwald ripening improves rate capability of high mass loading manganese oxide for supercapacitors. ACS Energy Lett. 2, 1752–1759 (2017). https://doi.org/10.1021/acsenergylett.7b00405

Huang, Z.H., Song, Y., Feng, D.Y., et al.: High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 12, 3557–3567 (2018). https://doi.org/10.1021/acsnano.8b00621

Li, H., Tao, Y., Zheng, X.Y., et al.: Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ. Sci. 9, 3135–3142 (2016). https://doi.org/10.1039/c6ee00941g

Zhang, M., Yu, X.W., Ma, H.Y., et al.: Robust graphene composite films for multifunctional electrochemical capacitors with an ultrawide range of areal mass loading toward high-rate frequency response and ultrahigh specific capacitance. Energy Environ. Sci. 11, 559–565 (2018). https://doi.org/10.1039/c7ee03349d

VahidMohammadi, A., Moncada, J., Chen, H.Z., et al.: Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. A 6, 22123–22133 (2018). https://doi.org/10.1039/C8TA05807E

Liu, J.C., Li, H., Batmunkh, M., et al.: Structural engineering to maintain the superior capacitance of molybdenum oxides at ultrahigh mass loadings. J. Mater. Chem. A 7, 23941–23948 (2019). https://doi.org/10.1039/C9TA04835A

Cai, X., Song, Y., Wang, S.Q., et al.: Extending the cycle life of high mass loading MoOx electrode for supercapacitor applications. Electrochim. Acta 325, 134877 (2019). https://doi.org/10.1016/j.electacta.2019.134877

Qi, Z., Ye, J.C., Chen, W., et al.: 3D-printed, superelastic polypyrrole-graphene electrodes with ultrahigh areal capacitance for electrochemical energy storage. Adv. Mater. Technol. 3, 1800053 (2018). https://doi.org/10.1002/admt.201800053

Li, X., Shao, J., Kim, S.K., et al.: High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes. Nat. Commun. 9, 2578 (2018). https://doi.org/10.1038/s41467-018-04937-8

Song, Y., Liu, T., Li, M.Y., et al.: Engineering of mesoscale pores in balancing mass loading and rate capability of hematite films for electrochemical capacitors. Adv. Energy Mater. 8, 1801784 (2018). https://doi.org/10.1002/aenm.201801784

Yao, B., Chandrasekaran, S., Zhang, J., et al.: Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3, 459–470 (2019). https://doi.org/10.1016/j.joule.2018.09.020

Guo, S.Q., Li, H.C., Zhang, X., et al.: Lignin carbon aerogel/nickel binary network for cubic supercapacitor electrodes with ultra-high areal capacitance. Carbon (2020). https://doi.org/10.1016/j.carbon.2020.12.051

Liu, K., Mo, R.W., Dong, W.J., et al.: Nature-derived, structure and function integrated ultra-thick carbon electrode for high-performance supercapacitors. J. Mater. Chem. A 8, 20072–20081 (2020). https://doi.org/10.1039/D0TA06108E

Zhao, J., Li, Y.J., Wang, G.L., et al.: Enabling high-volumetric-energy-density supercapacitors: designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes. J. Mater. Chem. A 5, 23085–23093 (2017). https://doi.org/10.1039/C7TA07010A

Lv, Z., Tang, Y., Zhu, Z., et al.: Honeycomb-lantern-inspired 3D stretchable supercapacitors with enhanced specific areal capacitance. Adv. Mater. 30, e1805468 (2018). https://doi.org/10.1002/adma.201805468

Huo, S.L., Liu, M.Q., Wu, L.L., et al.: Synthesis of ultrathin and hierarchically porous carbon nanosheets based on interlayer-confined inorganic/organic coordination for high performance supercapacitors. J. Power Sources 414, 383–392 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.028

Huo, S.L., Liu, M.Q., Wu, L.L., et al.: Methanesulfonic acid-assisted synthesis of N/S co-doped hierarchically porous carbon for high performance supercapacitors. J. Power Sources 387, 81–90 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.061

Wang, J.F., Wang, J.R., Kong, Z., et al.: Conducting-polymer-based materials for electrochemical energy conversion and storage. Adv. Mater. 29, 1703044 (2017). https://doi.org/10.1002/adma.201703044

Zhang, Z.T., Liao, M., Lou, H.Q., et al.: Conjugated polymers for flexible energy harvesting and storage. Adv. Mater. 30, 1704261 (2018). https://doi.org/10.1002/adma.201704261

Liao, C.R., Xiong, F., Li, X.J., et al.: Progress in conductive polymers in fibrous energy devices. Acta Phys. Chim. Sin. 33, 329–343 (2017)

Fan, Z.Y., Islam, N., Bayne, S.B.: Towards kilohertz electrochemical capacitors for filtering and pulse energy harvesting. Nano Energy 39, 306–320 (2017). https://doi.org/10.1016/j.nanoen.2017.06.048

Feng, D.W., Lei, T., Lukatskaya, M.R., et al.: Robust and conductive two-dimensional metal−organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3, 30–36 (2018). https://doi.org/10.1038/s41560-017-0044-5

Yang, Z.Y., Jin, L.J., Lu, G.Q., et al.: Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance. Adv. Funct. Mater. 24, 3917–3925 (2014). https://doi.org/10.1002/adfm.201304091

Li, L., Zhang, N., Zhang, M.Y., et al.: Ag-nanoparticle-decorated 2D titanium carbide (MXene) with superior electrochemical performance for supercapacitors. ACS Sustain. Chem. Eng. 6, 7442–7450 (2018). https://doi.org/10.1021/acssuschemeng.8b00047

Li, L., Zhang, M.Y., Zhang, X.T., et al.: New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors. J. Power Sources 364, 234–241 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.029

Guo, M., Liu, C.B., Zhang, Z.Z., et al.: Flexible Ti3C2Tx@Al electrodes with ultrahigh areal capacitance: in situ regulation of interlayer conductivity and spacing. Adv. Funct. Mater. 28, 1803196 (2018). https://doi.org/10.1002/adfm.201803196

Xia, Y., Mathis, T.S., Zhao, M.Q., et al.: Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409–412 (2018). https://doi.org/10.1038/s41586-018-0109-z

Wang, Y.M., Wang, X., Li, X.L., et al.: Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance. Adv. Funct. Mater. 29, 1900326 (2019). https://doi.org/10.1002/adfm.201900326

Kong, J., Yang, H.C., Guo, X.Z., et al.: High-mass-loading porous Ti3C2Tx films for ultrahigh-rate pseudocapacitors. ACS Energy Lett. 5, 2266–2274 (2020). https://doi.org/10.1021/acsenergylett.0c00704

Wang, Y.M., Lin, X.J., Liu, T., et al.: Wood-derived hierarchically porous electrodes for high-performance all-solid-state supercapacitors. Adv. Funct. Mater. 28, 1806207 (2018). https://doi.org/10.1002/adfm.201806207

Hu, L.Y., Gao, R., Zhang, A.Q., et al.: Cu2+ intercalation activates bulk redox reactions of MnO2 for enhancing capacitive performance. Nano Energy 74, 104891 (2020). https://doi.org/10.1016/j.nanoen.2020.104891

Feng, D.Y., Sun, Z., Huang, Z.H., et al.: Highly loaded manganese oxide with high rate capability for capacitive applications. J. Power Sources 396, 238–245 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.026

Zhang, Y., Yuan, X.M., Lu, W.B., et al.: MnO2 based sandwich structure electrode for supercapacitor with large voltage window and high mass loading. Chem. Eng. J. 368, 525–532 (2019). https://doi.org/10.1016/j.cej.2019.02.206

Chen, C.F., Verma, A., Mukherjee, P.P.: Probing the role of electrode microstructure in the lithium-ion battery thermal behavior. J. Electrochem. Soc. 164, E3146–E3158 (2017). https://doi.org/10.1149/2.0161711jes

Yang, C., Xin, S., Mai, L.Q., et al.: Materials design for high-safety sodium-ion battery. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202000974

Li, H., Qi, C.S., Tao, Y., et al.: Quantifying the volumetric performance metrics of supercapacitors. Adv. Energy Mater. 9, 1900079 (2019). https://doi.org/10.1002/aenm.201900079

Xiao, K.F., Pan, J., Liang, K., et al.: Layered conductive polymer-inorganic anion network for high-performance ultra-loading capacitive electrodes. Energy Storage Mater. 14, 90–99 (2018). https://doi.org/10.1016/j.ensm.2018.02.018

Xu, Y., Tao, Y., Zheng, X.Y., et al.: A metal-free supercapacitor electrode material with a record high volumetric capacitance over 800 F cm−3. Adv. Mater. 27, 8082–8087 (2015). https://doi.org/10.1002/adma.201504151

Bu, Y.F., Sun, T., Cai, Y.J., et al.: Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh-volumetric-performance supercapacitors. Adv. Mater. 29, 1700470 (2017). https://doi.org/10.1002/adma.201700470

Ghidiu, M., Lukatskaya, M.R., Zhao, M.Q., et al.: Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970

Murali, S., Quarles, N., Zhang, L.L., et al.: Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes. Nano Energy 2, 764–768 (2013). https://doi.org/10.1016/j.nanoen.2013.01.007

Xu, Y., Lin, Z., Zhong, X., et al.: Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014). https://doi.org/10.1038/ncomms5554

Ma, H.Y., Kong, D.B., Xu, Y., et al.: Disassembly-reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor. Small 13, 1701026 (2017). https://doi.org/10.1002/smll.201701026

Zhao, X., Zhang, L.L., Murali, S., et al.: Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. ACS Nano 6, 5404–5412 (2012). https://doi.org/10.1021/nn3012916

Yang, X., Cheng, C., Wang, Y., et al.: Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534–537 (2013). https://doi.org/10.1126/science.1239089

Acerce, M., Voiry, D., Chhowalla, M.: Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015). https://doi.org/10.1038/nnano.2015.40

Zhang, W., Topsakal, M., Cama, C., et al.: Multi-stage structural transformations in zero-strain lithium titanate unveiled by in situ X-ray absorption fingerprints. J. Am. Chem. Soc. 139, 16591–16603 (2017). https://doi.org/10.1021/jacs.7b07628

Ciez, R.E., Steingart, D.: Asymptotic cost analysis of intercalation lithium-ion systems for multi-hour duration energy storage. Joule 4, 597–614 (2020). https://doi.org/10.1016/j.joule.2020.01.007

Adams, R.A., Varma, A., Pol, V.G.: Carbon anodes for nonaqueous alkali metal-ion batteries and their thermal safety aspects. Adv. Energy Mater. 9, 1900550 (2019). https://doi.org/10.1002/aenm.201900550

Mei, W.X., Chen, H.D., Sun, J.H., et al.: The effect of electrode design parameters on battery performance and optimization of electrode thickness based on the electrochemical–thermal coupling model. Sustain. Energy Fuels 3, 148–165 (2019). https://doi.org/10.1039/c8se00503f

Lin, H.P., Chua, D., Salomon, M., et al.: Low-temperature behavior of Li-ion cells. Electrochem. Solid-State Lett. 4, A71 (2001). https://doi.org/10.1149/1.1368736

Spotnitz, R., Franklin, J.: Abuse behavior of high-power, lithium-ion cells. J. Power Sources 113, 81–100 (2003). https://doi.org/10.1016/S0378-7753(02)00488-3

Li, H., Wu, D.B., Wu, J., et al.: Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries. Adv. Mater. 29, 1703548 (2017). https://doi.org/10.1002/adma.201703548

Lei, D.N., Benson, J., Magasinski, A., et al.: Transformation of bulk alloys to oxide nanowires. Science 355, 267–271 (2017). https://doi.org/10.1126/science.aal2239

Wang, J.H., Yamada, Y., Sodeyama, K., et al.: Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3, 22–29 (2018). https://doi.org/10.1038/s41560-017-0033-8

Wang, Z.Q., Tan, R., Wang, H.B., et al.: A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Adv. Mater. 30, 1704436 (2018). https://doi.org/10.1002/adma.201704436

Simon, P., Gogotsi, Y.: Capacitive energy storage in nanostructured carbon-electrolyte systems. Acc. Chem. Res. 46, 1094–1103 (2013). https://doi.org/10.1021/ar200306b

Thomitzek, M., Schmidt, O., Röder, F., et al.: Simulating process-product interdependencies in battery production systems. Procedia CIRP 72, 346–351 (2018). https://doi.org/10.1016/j.procir.2018.03.056

Shi, S.Q., Gao, J., Liu, Y., et al.: Multi-scale computation methods: their applications in lithium-ion battery research and development. Chin. Phys. B 25, 178–201 (2016)

Pecher, O., Carretero-González, J., Griffith, K.J., et al.: Materials’ methods: NMR in battery research. Chem. Mater. 29, 213–242 (2017). https://doi.org/10.1021/acs.chemmater.6b03183

Li, Y.Z., Yan, K., Lee, H.W., et al.: Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029 (2016). https://doi.org/10.1038/nenergy.2015.29

Li, Y., Li, Y., Pei, A., et al.: Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017). https://doi.org/10.1126/science.aam6014

Nelson, J., Misra, S., Yang, Y., et al.: In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J. Am. Chem. Soc. 134, 6337–6343 (2012). https://doi.org/10.1021/ja2121926

Wood, D.L., Li, J.L., Daniel, C.: Prospects for reducing the processing cost of lithium ion batteries. J. Power Sources 275, 234–242 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.019

Ciez, R.E., Whitacre, J.F.: Comparison between cylindrical and prismatic lithium-ion cell costs using a process based cost model. J. Power Sources 340, 273–281 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.054