High-Mass-Loading Electrodes for Advanced Secondary Batteries and Supercapacitors
Tóm tắt
Từ khóa
Tài liệu tham khảo
Dunn, B., Kamath, H., Tarascon, J.M.: Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). https://doi.org/10.1126/science.1212741
Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438
McCloskey, B.D.: Expanding the ragone plot: pushing the limits of energy storage. J. Phys. Chem. Lett. 6, 3592–3593 (2015). https://doi.org/10.1021/acs.jpclett.5b01813
Wu, F., Yang, H.Y., Bai, Y., et al.: Multi-electron reaction concept for the universal battery design. J. Energy Chem. 51, 416–417 (2020). https://doi.org/10.1016/j.jechem.2019.11.026
Huang, M.F., Zhen, S., Ren, X.L., et al.: High-voltage hydrous electrolytes for electrochemical energy storage. J. Power Sources 465, 228265 (2020). https://doi.org/10.1016/j.jpowsour.2020.228265
Kuang, Y.D., Chen, C.J., Kirsch, D., et al.: Thick electrode batteries: principles, opportunities, and challenges. Adv. Energy Mater. 9, 1901457 (2019). https://doi.org/10.1002/aenm.201901457
Wu, F., Maier, J., Yu, Y.: Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569–1614 (2020). https://doi.org/10.1039/c7cs00863e
Wang, L., Chen, B., Ma, J., et al.: Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem. Soc. Rev. 47, 6505–6602 (2018). https://doi.org/10.1039/c8cs00322j
Wang, Q., Yan, J., Fan, Z.J.: Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ. Sci. 9, 729–762 (2016). https://doi.org/10.1039/C5EE03109E
Geng, H.Y., Peng, Y., Qu, L.T., et al.: Structure design and composition engineering of carbon-based nanomaterials for lithium energy storage. Adv. Energy Mater. 10, 1903030 (2020). https://doi.org/10.1002/aenm.201903030
Manthiram, A., Vadivel Murugan, A., Sarkar, A., et al.: Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ. Sci. 1, 621–638 (2008). https://doi.org/10.1039/b811802g
Sun, H.T., Zhu, J., Baumann, D., et al.: Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 4, 45–60 (2019). https://doi.org/10.1038/s41578-018-0069-9
Gogotsi, Y., Simon, P.: True performance metrics in electrochemical energy storage. Science 334, 917–918 (2011). https://doi.org/10.1126/science.1213003
Zhang, C., Lv, W., Tao, Y., et al.: Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage. Energy Environ. Sci. 8, 1390–1403 (2015). https://doi.org/10.1039/c5ee00389j
Liu, C.C., Yan, X.J., Hu, F., et al.: Toward superior capacitive energy storage: recent advances in pore engineering for dense electrodes. Adv. Mater. 30, 1705713 (2018). https://doi.org/10.1002/adma.201705713
Wang, X., Wang, T.Y., Borovilas, J., et al.: Vertically-aligned nanostructures for electrochemical energy storage. Nano Res. 12, 2002–2017 (2019). https://doi.org/10.1007/s12274-019-2392-x
Lu, L.L., Lu, Y.Y., Xiao, Z.J., et al.: Wood-inspired high-performance ultrathick bulk battery electrodes. Adv. Mater. 30, 1706745 (2018). https://doi.org/10.1002/adma.201706745
Chen, C.J., Zhang, Y., Li, Y.J., et al.: Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors. Adv. Energy Mater. 7, 1700595 (2017). https://doi.org/10.1002/aenm.201700595
Jian, Z.L., Luo, W., Ji, X.L.: Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137, 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
Choi, J.W., Aurbach, D.: Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13
Liu, M.Q., Xu, M., Xue, Y.F., et al.: Efficient capacitive deionization using natural basswood-derived, freestanding, hierarchically porous carbon electrodes. ACS Appl. Mater. Interfaces 10, 31260–31270 (2018). https://doi.org/10.1021/acsami.8b08232
Wang, R.H., Cui, W.S., Chu, F.L., et al.: Lithium metal anodes: present and future. J. Energy Chem. 48, 145–159 (2020). https://doi.org/10.1016/j.jechem.2019.12.024
Chen, R., Yu, M., Sahu, R.P., et al.: The development of pseudocapacitor electrodes and devices with high active mass loading. Adv. Energy Mater. 10, 1903848 (2020). https://doi.org/10.1002/aenm.201903848
Choi, S., Jung, D.S., Choi, J.W.: Scalable fracture-free SiOC glass coating for robust silicon nanoparticle anodes in lithium secondary batteries. Nano Lett. 14, 7120–7125 (2014). https://doi.org/10.1021/nl503620z
Li, X.L., Peng, W.X., Tian, R.Z., et al.: Excellent performance single-crystal NCM cathode under high mass loading for all-solid-state lithium batteries. Electrochim. Acta 363, 137185 (2020). https://doi.org/10.1016/j.electacta.2020.137185
Chen, Y., Zhou, Z.L., Li, N., et al.: Thick electrodes upon biomass-derivative carbon current collectors: high-areal capacity positive electrodes for aluminum-ion batteries. Electrochim. Acta 323, 134805 (2019). https://doi.org/10.1016/j.electacta.2019.134805
Black, J.M., Andreas, H.A.: Pore shape affects spontaneous charge redistribution in small pores. J. Phys. Chem. C 114, 12030–12038 (2010). https://doi.org/10.1021/jp103766q
Ervin, M.H.: Etching holes in graphene supercapacitor electrodes for faster performance. Nanotechnology 26, 234003 (2015). https://doi.org/10.1088/0957-4484/26/23/234003
Chmiola, J., Yushin, G., Gogotsi, Y., et al.: Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006). https://doi.org/10.1126/science.1132195
Merlet, C., Péan, C., Rotenberg, B., et al.: Highly confined ions store charge more efficiently in supercapacitors. Nat. Commun. 4, 2701 (2013). https://doi.org/10.1038/ncomms3701
Kondrat, S., Georgi, N., Fedorov, M.V., et al.: A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations. Phys. Chem. Chem. Phys. 13, 11359–11366 (2011). https://doi.org/10.1039/c1cp20798a
Urita, K., Ide, N., Isobe, K., et al.: Enhanced electric double-layer capacitance by desolvation of lithium ions in confined nanospaces of microporous carbon. ACS Nano 8, 3614–3619 (2014). https://doi.org/10.1021/nn500169k
Prehal, C., Weingarth, D., Perre, E., et al.: Tracking the structural arrangement of ions in carbon supercapacitor nanopores using in situ small-angle X-ray scattering. Energy Environ. Sci. 8, 1725–1735 (2015). https://doi.org/10.1039/C5EE00488H
Galhena, D.T.L., Bayer, B.C., Hofmann, S., et al.: Understanding capacitance variation in sub-nanometer pores by in situ tuning of interlayer constrictions. ACS Nano 10, 747–754 (2016). https://doi.org/10.1021/acsnano.5b05819
Centeno, T.A., Sereda, O., Stoeckli, F.: Capacitance in carbon pores of 0.7 to 15 nm: a regular pattern. Phys. Chem. Chem. Phys. 13, 12403–12406 (2011). https://doi.org/10.1039/C1CP20748B
Zhi, J., Wang, Y.F., Deng, S., et al.: Study on the relation between pore size and supercapacitance in mesoporous carbon electrodes with silica-supported carbon nanomembranes. RSC Adv. 4, 40296–40300 (2014). https://doi.org/10.1039/C4RA06260D
Ebner, M., Chung, D.W., García, R.E., et al.: Tortuosity anisotropy in lithium-ion battery electrodes. Adv. Energy Mater. 4, 1301278 (2014). https://doi.org/10.1002/aenm.201301278
Gao, H., Wu, Q., Hu, Y.X., et al.: Revealing the rate-limiting Li-ion diffusion pathway in ultrathick electrodes for Li-ion batteries. J. Phys. Chem. Lett. 9, 5100–5104 (2018). https://doi.org/10.1021/acs.jpclett.8b02229
Ogihara, N., Itou, Y., Sasaki, T., et al.: Impedance spectroscopy characterization of porous electrodes under different electrode thickness using a symmetric cell for high-performance lithium-ion batteries. J. Phys. Chem. C 119, 4612–4619 (2015). https://doi.org/10.1021/jp512564f
Hou, S., Gao, T., Li, X.G., et al.: Operando probing ion and electron transport in porous electrodes. Nano Energy 67, 104254 (2020). https://doi.org/10.1016/j.nanoen.2019.104254
Du, Z.J., Wood, D.L., Daniel, C., et al.: Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries. J. Appl. Electrochem. 47, 405–415 (2017). https://doi.org/10.1007/s10800-017-1047-4
Ike, I.S., Sigalas, I., Iyuke, S.E.: Modelling and optimization of electrodes utilization in symmetric electrochemical capacitors for high energy and power. J. Energy Storage 12, 261–275 (2017). https://doi.org/10.1016/j.est.2017.05.006
Sun, N., Zhu, Q.Z., Anasori, B., et al.: MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv. Funct. Mater. 29, 1906282 (2019). https://doi.org/10.1002/adfm.201906282
Higgins, T.M., Park, S.H., King, P.J., et al.: A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 10, 3702–3713 (2016). https://doi.org/10.1021/acsnano.6b00218
Liu, L., Zhao, H.P., Wang, Y., et al.: Evaluating the role of nanostructured current collectors in energy storage capability of supercapacitor electrodes with thick electroactive materials layers. Adv. Funct. Mater. 28, 1705107 (2018). https://doi.org/10.1002/adfm.201705107
Hasegawa, G., Deguchi, T., Kanamori, K., et al.: High-level doping of nitrogen, phosphorus, and sulfur into activated carbon monoliths and their electrochemical capacitances. Chem. Mater. 27, 4703–4712 (2015). https://doi.org/10.1021/acs.chemmater.5b01349
Wang, Y., Fu, X.W., Zheng, M., et al.: Strategies for building robust traffic networks in advanced energy storage devices: a focus on composite electrodes. Adv. Mater. 31, 1804204 (2019). https://doi.org/10.1002/adma.201804204
Liu, T., Zhang, F., Song, Y., et al.: Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5, 17705–17733 (2017). https://doi.org/10.1039/C7TA05646J
Dai, Y.H., Li, Q.D., Tan, S.S., et al.: Nanoribbons and nanoscrolls intertwined three-dimensional vanadium oxide hydrogels for high-rate lithium storage at high mass loading level. Nano Energy 40, 73–81 (2017). https://doi.org/10.1016/j.nanoen.2017.08.011
Yao, B., Chandrasekaran, S., Zhang, H.Z., et al.: 3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels. Adv. Mater. 32, 1906652 (2020). https://doi.org/10.1002/adma.201906652
Hao, Z.B., He, X.C., Li, H.D., et al.: Vertically aligned and ordered arrays of 2D MCo2S4@Metal with ultrafast ion/electron transport for thickness-independent pseudocapacitive energy storage. ACS Nano 14, 12719–12731 (2020). https://doi.org/10.1021/acsnano.0c02973
Yi, H.M., Li, D., Lv, Z., et al.: Constructing high-performance 3D porous self-standing electrodes with various morphologies and shapes by a flexible phase separation-derived method. J. Mater. Chem. A 7, 22550–22558 (2019). https://doi.org/10.1039/C9TA08845H
Liu, Y.W., Zhou, T.F., Zheng, Y., et al.: Local electric field facilitates high-performance Li-ion batteries. ACS Nano 11, 8519–8526 (2017). https://doi.org/10.1021/acsnano.7b04617
Li, Z., Zhang, C.Z., Han, F., et al.: Towards high-volumetric performance of Na/Li-ion batteries: a better anode material with molybdenum pentachloride-graphite intercalation compounds (MoCl5-GICs). J. Mater. Chem. A 8, 2430–2438 (2020). https://doi.org/10.1039/C9TA12651A
Chen, C.J., Zhang, Y., Li, Y.J., et al.: All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10, 538–545 (2017). https://doi.org/10.1039/c6ee03716j
Li, H., Peng, L., Wu, D.B., et al.: Ultrahigh-capacity and fire-resistant LiFePO4-based composite cathodes for advanced lithium-ion batteries. Adv. Energy Mater. 9, 1802930 (2019). https://doi.org/10.1002/aenm.201802930
Zhang, Q.T., Yu, Z.L., Du, P., et al.: Carbon nanomaterials used as conductive additives in lithium ion batteries. Recent Patents Nanotechnol. 4, 100–110 (2010). https://doi.org/10.2174/187221010791208803
Bitsch, B., Gallasch, T., Schroeder, M., et al.: Capillary suspensions as beneficial formulation concept for high energy density Li-ion battery electrodes. J. Power Sources 328, 114–123 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.102
Karkar, Z., Mazouzi, D., Hernandez, C.R., et al.: Threshold-like dependence of silicon-based electrode performance on active mass loading and nature of carbon conductive additive. Electrochim. Acta 215, 276–288 (2016). https://doi.org/10.1016/j.electacta.2016.08.118
Kuang, Y.D., Chen, C.J., Pastel, G., et al.: Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Adv. Energy Mater. 8, 1802398 (2018). https://doi.org/10.1002/aenm.201802398
Yu, L.Y., Hu, L.F., Anasori, B., et al.: MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett. 3, 1597–1603 (2018). https://doi.org/10.1021/acsenergylett.8b00718
Fan, Z.M., Wang, Y.S., Xie, Z.M., et al.: Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 5, 1800750 (2018). https://doi.org/10.1002/advs.201800750
Wang, B., Li, X.L., Luo, B., et al.: Intertwined network of Si/C nanocables and carbon nanotubes as lithium-ion battery anodes. ACS Appl. Mater. Interfaces 5, 6467–6472 (2013). https://doi.org/10.1021/am402022n
Shi, Y., Zhou, X.Y., Yu, G.H.: Material and structural design of novel binder systems for high-energy, high-power lithium-ion batteries. Acc. Chem. Res. 50, 2642–2652 (2017). https://doi.org/10.1021/acs.accounts.7b00402
Ryu, J., Kim, S., Kim, J., et al.: Room-temperature crosslinkable natural polymer binder for high-rate and stable silicon anodes. Adv. Funct. Mater. 30, 1908433 (2020). https://doi.org/10.1002/adfm.201908433
Yue, Y., Liang, H.: 3D current collectors for lithium-ion batteries: a topical review. Small Methods 2, 1800056 (2018). https://doi.org/10.1002/smtd.201800056
Zheng, J.X., Zhao, Q., Liu, X., et al.: Nonplanar electrode architectures for ultrahigh areal capacity batteries. ACS Energy Lett. 4, 271–275 (2019). https://doi.org/10.1021/acsenergylett.8b02131
de las Casas, C., Li, W.Z.: A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 208, 74–85 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.013
Park, S.H., King, P.J., Tian, R.Y., et al.: High areal capacity battery electrodes enabled by segregated nanotube networks. Nat. Energy 4, 560–567 (2019). https://doi.org/10.1038/s41560-019-0398-y
Nguyen, B.P.N., Kumar, N.A., Gaubicher, J., et al.: Nanosilicon-based thick negative composite electrodes for lithium batteries with graphene as conductive additive. Adv. Energy Mater. 3, 1351–1357 (2013). https://doi.org/10.1002/aenm.201300330
Ke, L., Lv, W., Su, F.Y., et al.: Electrode thickness control: precondition for quite different functions of graphene conductive additives in LiFePO4 electrode. Carbon 92, 311–317 (2015). https://doi.org/10.1016/j.carbon.2015.04.064
Zhang, C.J., Park, S.H., Seral-Ascaso, A., et al.: High capacity silicon anodes enabled by MXene viscous aqueous ink. Nat. Commun. 10, 849 (2019). https://doi.org/10.1038/s41467-019-08383-y
Zang, Y.H., Du, J., Du, Y.F., et al.: The migration of styrene butadiene latex during the drying of coating suspensions: when and how does migration of colloidal particles occur? Langmuir 26, 18331–18339 (2010). https://doi.org/10.1021/la103675f
Müller, M., Pfaffmann, L., Jaiser, S., et al.: Investigation of binder distribution in graphite anodes for lithium-ion batteries. J. Power Sources 340, 1–5 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.051
Bitla, S., Tripp, C.P., Bousfield, D.W.: A Raman spectroscopic study of migration in paper coatings. J. Pulp Pap. Sci. 29, 382–385 (2003)
Landesfeind, J., Eldiven, A., Gasteiger, H.A.: Influence of the binder on lithium ion battery electrode tortuosity and performance. J. Electrochem. Soc. 165, A1122–A1128 (2018). https://doi.org/10.1149/2.0971805jes
Shim, J., Kostecki, R., Richardson, T., et al.: Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. J. Power Sources 112, 222–230 (2002). https://doi.org/10.1016/S0378-7753(02)00363-4
Mazouzi, D., Lestriez, B., Roué, L., et al.: Silicon composite electrode with high capacity and long cycle life. Electrochem. Solid-State Lett. 12, A215 (2009). https://doi.org/10.1149/1.3212894
Ibing, L., Gallasch, T., Schneider, P., et al.: Towards water based ultra-thick Li ion battery electrodes: a binder approach. J. Power Sources 423, 183–191 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.020
Lee, J.H., Paik, U., Hackley, V.A., et al.: Effect of poly(acrylic acid) on adhesion strength and electrochemical performance of natural graphite negative electrode for lithium-ion batteries. J. Power Sources 161, 612–616 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.087
Michael, M.S., Jacob, M.M.E., Prabaharan, S.R.S., et al.: Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers. Solid State Ionics 98, 167–174 (1997). https://doi.org/10.1016/S0167-2738(97)00117-3
Shi, H., Zhao, Y., Dong, X., et al.: Frustrated crystallisation and hierarchical self-assembly behaviour of comb-like polymers. Chem. Soc. Rev. 42, 2075–2099 (2013). https://doi.org/10.1039/c2cs35350d
Cao, P.F., Naguib, M., Du, Z.J., et al.: Effect of binder architecture on the performance of silicon/graphite composite anodes for lithium ion batteries. ACS Appl. Mater. Interfaces 10, 3470–3478 (2018). https://doi.org/10.1021/acsami.7b13205
Zhou, Z.L., Li, N., Yang, Y.Z., et al.: Ultra-lightweight 3D carbon current collectors: constructing all-carbon electrodes for stable and high energy density dual-ion batteries. Adv. Energy Mater. 8, 1801439 (2018). https://doi.org/10.1002/aenm.201801439
Li, N., Xin, Y.D., Chen, H.S., et al.: Thickness evolution of graphite-based cathodes in the dual ion batteries via in operando optical observation. J. Energy Chem. 29, 122–128 (2019). https://doi.org/10.1016/j.jechem.2018.03.003
Singh, M., Kaiser, J., Hahn, H.: Thick electrodes for high energy lithium ion batteries. J. Electrochem. Soc. 162, A1196–A1201 (2015). https://doi.org/10.1149/2.0401507jes
Yang, G.F., Song, K.Y., Joo, S.K.: Ultra-thick Li-ion battery electrodes using different cell size of metal foam current collectors. RSC Adv. 5, 16702–16706 (2015). https://doi.org/10.1039/C4RA14485F
Zhao, H.P., Lei, Y.: 3D nanostructures for the next generation of high-performance nanodevices for electrochemical energy conversion and storage. Adv. Energy Mater. 10, 2001460 (2020). https://doi.org/10.1002/aenm.202001460
Wang, H., Shao, Y., Mei, S.L., et al.: Polymer-derived heteroatom-doped porous carbon materials. Chem. Rev. 120, 9363–9419 (2020). https://doi.org/10.1021/acs.chemrev.0c00080
Liu, M.Q., Huo, S.L., Xu, M., et al.: Structural engineering of N/S co-doped carbon material as high-performance electrode for supercapacitors. Electrochim. Acta 274, 389–399 (2018). https://doi.org/10.1016/j.electacta.2018.04.084
Jin, H.L., Feng, X., Li, J., et al.: Heteroatom-doped porous carbon materials with unprecedented high volumetric capacitive performance. Angew. Chem. Int. Ed. 58, 2397–2401 (2019). https://doi.org/10.1002/anie.201813686
Ghosh, S., Barg, S., Jeong, S.M., et al.: Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv. Energy Mater. 10, 2001239 (2020). https://doi.org/10.1002/aenm.202001239
Pan, Z.H., Zhi, H.Z., Qiu, Y.C., et al.: Achieving commercial-level mass loading in ternary-doped holey graphene hydrogel electrodes for ultrahigh energy density supercapacitors. Nano Energy 46, 266–276 (2018). https://doi.org/10.1016/j.nanoen.2018.02.007
Zhang, L.P., Niu, J.B., Dai, L.M., et al.: Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells. Langmuir 28, 7542–7550 (2012). https://doi.org/10.1021/la2043262
Kong, X.K., Chen, Q.W., Sun, Z.Y.: Enhanced oxygen reduction reactions in fuel cells on H-decorated and B-substituted graphene. ChemPhysChem 14, 514–519 (2013). https://doi.org/10.1002/cphc.201200918
Denis, P.A., Faccio, R., Mombru, A.W.: Is it possible to dope single-walled carbon nanotubes and graphene with sulfur? ChemPhysChem 10, 715–722 (2009). https://doi.org/10.1002/cphc.200800592
Denis, P.A.: Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur. Chem. Phys. Lett. 492, 251–257 (2010). https://doi.org/10.1016/j.cplett.2010.04.038
Kong, X.K., Chen, C.L., Chen, Q.W.: Doped graphene for metal-free catalysis. Chem. Soc. Rev. 43, 2841–2857 (2014). https://doi.org/10.1039/c3cs60401b
Lai, F.L., Feng, J.R., Heil, T., et al.: Strong metal oxide-support interactions in carbon/hematite nanohybrids activate novel energy storage modes for ionic liquid-based supercapacitors. Energy Storage Mater. 20, 188–195 (2019). https://doi.org/10.1016/j.ensm.2019.04.035
Sahoo, G., Polaki, S.R., Ghosh, S., et al.: Plasma-tuneable oxygen functionalization of vertical graphenes enhance electrochemical capacitor performance. Energy Storage Mater. 14, 297–305 (2018). https://doi.org/10.1016/j.ensm.2018.05.011
Pender, J., Guerrera, J.V., Wygant, B.R., et al.: Carbon nitride transforms into a high lithium storage capacity nitrogen-rich carbon. ACS Nano 13, 9279–9291 (2019). https://doi.org/10.1021/acsnano.9b03861
Kumar, R., Sahoo, S., Joanni, E., et al.: Heteroatom doped graphene engineering for energy storage and conversion. Mater. Today 39, 47–65 (2020). https://doi.org/10.1016/j.mattod.2020.04.010
Sun, Q., He, B., Zhang, X.Q., et al.: Engineering of hollow core-shell interlinked carbon spheres for highly stable lithium-sulfur batteries. ACS Nano 9, 8504–8513 (2015). https://doi.org/10.1021/acsnano.5b03488
Lv, Q., Liu, Y., Ma, T.Y., et al.: Hollow structured silicon anodes with stabilized solid electrolyte interphase film for lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 23501–23506 (2015). https://doi.org/10.1021/acsami.5b05970
Liu, N., Lu, Z.D., Zhao, J., et al.: A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014). https://doi.org/10.1038/nnano.2014.6
Pan, L., Huang, H.J., Zhong, M., et al.: Hydrogel-derived foams of nitrogen-doped carbon loaded with Sn nanodots for high-mass-loading Na-ion storage. Energy Storage Mater. 16, 519–526 (2019). https://doi.org/10.1016/j.ensm.2018.09.010
Yao, H.B., Zheng, G.Y., Li, W.Y., et al.: Crab shells as sustainable templates from nature for nanostructured battery electrodes. Nano Lett. 13, 3385–3390 (2013). https://doi.org/10.1021/nl401729r
Zheng, Y.H., Lu, Y.X., Qi, X.G., et al.: Superior electrochemical performance of sodium-ion full-cell using poplar wood derived hard carbon anode. Energy Storage Mater. 18, 269–279 (2019). https://doi.org/10.1016/j.ensm.2018.09.002
Wang, B., Ryu, J., Choi, S., et al.: Folding graphene film yields high areal energy storage in lithium-ion batteries. ACS Nano 12, 1739–1746 (2018). https://doi.org/10.1021/acsnano.7b08489
Xu, X.M., Wu, P.J., Li, Q., et al.: Realizing stable lithium and sodium storage with high areal capacity using novel nanosheet-assembled compact CaV4O9 microflowers. Nano Energy 50, 606–614 (2018). https://doi.org/10.1016/j.nanoen.2018.06.012
Zhu, C., Liu, T., Qian, F., et al.: Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16, 3448–3456 (2016). https://doi.org/10.1021/acs.nanolett.5b04965
Zhu, C., Han, T.Y., Duoss, E.B., et al.: Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015). https://doi.org/10.1038/ncomms7962
Zhao, Z.D., Sun, M.Q., Chen, W.J., et al.: Sandwich, vertical-channeled thick electrodes with high rate and cycle performance. Adv. Funct. Mater. 29, 1809196 (2019). https://doi.org/10.1002/adfm.201809196
Zhu, Y., Ju, Z.Y., Zhang, X., et al.: Evaporation-induced vertical alignment enabling directional ion transport in a 2D-nanosheet-based battery electrode. Adv. Mater. 32, 1907941 (2020). https://doi.org/10.1002/adma.201907941
Bai, Y., Zhou, X.Z., Zhan, C., et al.: 3D hierarchical nano-flake/micro-flower iron fluoride with hydration water induced tunnels for secondary lithium battery cathodes. Nano Energy 32, 10–18 (2017). https://doi.org/10.1016/j.nanoen.2016.12.017
Ni, W., Xue, Y.F., Zang, X.G., et al.: Fluorine doped cagelike carbon electrocatalyst: an insight into the structure-enhanced CO selectivity for CO2 reduction at high overpotential. ACS Nano 14, 2014–2023 (2020). https://doi.org/10.1021/acsnano.9b08528
Zang, X.G., Xue, Y.F., Ni, W., et al.: Enhanced electrosorption ability of carbon nanocages as an advanced electrode material for capacitive deionization. ACS Appl. Mater. Interfaces 12, 2180–2190 (2020). https://doi.org/10.1021/acsami.9b12744
Li, Y., Bai, Y., Wu, C., et al.: Three-dimensional fusiform hierarchical micro/nano Li1.2Ni0.2Mn0.6O2 with a preferred orientation (110) plane as a high energy cathode material for lithium-ion batteries. J. Mater. Chem. A 4, 5942–5951 (2016). https://doi.org/10.1039/C6TA00460A
Zhu, J., Shan, Y., Wang, T., et al.: A hyperaccumulation pathway to three-dimensional hierarchical porous nanocomposites for highly robust high-power electrodes. Nat. Commun. 7, 13432 (2016). https://doi.org/10.1038/ncomms13432
Zhang, S., Zhu, J.Y., Qing, Y., et al.: Ultramicroporous carbons puzzled by graphene quantum dots: Integrated high gravimetric, volumetric, and areal capacitances for supercapacitors. Adv. Funct. Mater. 28, 1805898 (2018). https://doi.org/10.1002/adfm.201805898
Dutta, D., Jiang, J.Y., Jamaluddin, A., et al.: Nanocatalyst-assisted fine tailoring of pore structure in holey-graphene for enhanced performance in energy storage. ACS Appl. Mater. Interfaces 11, 36560–36570 (2019). https://doi.org/10.1021/acsami.9b09927
Fu, K., Yao, Y.G., Dai, J.Q., et al.: Progress in 3D printing of carbon materials for energy-related applications. Adv. Mater. 29, 1603486 (2017). https://doi.org/10.1002/adma.201603486
Barg, S., Perez, F.M., Ni, N., et al.: Mesoscale assembly of chemically modified graphene into complex cellular networks. Nat. Commun. 5, 4328 (2014). https://doi.org/10.1038/ncomms5328
Billaud, J., Bouville, F., Magrini, T., et al.: Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy 1, 16097 (2016). https://doi.org/10.1038/nenergy.2016.97
Li, Y., Wu, C., Bai, Y., et al.: Hierarchical mesoporous lithium-rich Li[Li0.2Ni0.2Mn0.6]O2 cathode material synthesized via ice templating for lithium-ion battery. ACS Appl. Mater. Interfaces 8, 18832–18840 (2016). https://doi.org/10.1021/acsami.6b04687
Li, P., Wang, Y.N., Jeong, J.Y., et al.: Vertically constructed monolithic electrodes for sodium ion batteries: toward low tortuosity and high energy density. J. Mater. Chem. A 7, 25985–25992 (2019). https://doi.org/10.1039/c9ta09644b
Kou, W., Li, X.C., Liu, Y., et al.: Triple-layered carbon-SiO2 composite membrane for high energy density and long cycling Li-S batteries. ACS Nano 13, 5900–5909 (2019). https://doi.org/10.1021/acsnano.9b01703
Zheng, Y., Zhou, T.F., Zhang, C.F., et al.: Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew. Chem. Int. Ed. 55, 3408–3413 (2016). https://doi.org/10.1002/anie.201510978
Zheng, Q., Yi, H.M., Liu, W.Q., et al.: Improving the electrochemical performance of Na3V2(PO4)3 cathode in sodium ion batteries through Ce/V substitution based on rational design and synthesis optimization. Electrochim. Acta 238, 288–297 (2017). https://doi.org/10.1016/j.electacta.2017.04.029
Zheng, Y., Zhou, T.F., Zhao, X.D., et al.: Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv. Mater. 29, 1700396 (2017). https://doi.org/10.1002/adma.201700396
Luo, W., Li, F., Li, Q.D., et al.: Heterostructured Bi2S3-Bi2O3 nanosheets with a built-in electric field for improved sodium storage. ACS Appl. Mater. Interfaces 10, 7201–7207 (2018). https://doi.org/10.1021/acsami.8b01613
Zou, X., Su, J., Silva, R., et al.: Efficient oxygen evolution reaction catalyzed by low-density Ni-doped Co3O4 nanomaterials derived from metal-embedded graphitic C3N4. Chem Commun (Camb) 49, 7522–7524 (2013). https://doi.org/10.1039/c3cc42891e
Ye, L., Zhou, Y.T., Zhao, Y.G., et al.: Engineering oxygen vacancy on iron oxides/hollow carbon cloth electrode toward stable lithium-ion batteries. Chem. Eng. J. 388, 124229 (2020). https://doi.org/10.1016/j.cej.2020.124229
Wu, F., Liu, L., Yuan, Y.F., et al.: Expanding interlayer spacing of hard carbon by natural K+ doping to boost Na-ion storage. ACS Appl. Mater. Interfaces 10, 27030–27038 (2018). https://doi.org/10.1021/acsami.8b08380
Guo, D.L., Qin, J.W., Yin, Z.G., et al.: Achieving high mass loading of Na3V2(PO4)3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries. Nano Energy 45, 136–147 (2018). https://doi.org/10.1016/j.nanoen.2017.12.038
Chen, Y.J., Wang, Y.S., Wang, Z.P., et al.: Densification by compaction as an effective low-cost method to attain a high areal lithium storage capacity in a CNT@Co3O4 sponge. Adv. Energy Mater. 8, 1702981 (2018). https://doi.org/10.1002/aenm.201702981
Chen, J.Z., Xu, J.L., Zhou, S., et al.: Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy 25, 193–202 (2016). https://doi.org/10.1016/j.nanoen.2016.04.037
Zhang, W., Wei, S., Wu, Y., et al.: Poly(ionic liquid)-derived graphitic nanoporous carbon membrane enables superior supercapacitive energy storage. ACS Nano 13, 10261–10271 (2019). https://doi.org/10.1021/acsnano.9b03514
Wu, C.L., Zhang, S., Wu, W., et al.: Carbon nanotubes grown on the inner wall of carbonized wood tracheids for high-performance supercapacitors. Carbon 150, 311–318 (2019). https://doi.org/10.1016/j.carbon.2019.05.032
Li, Y.J., Fu, K., Chen, C.J., et al.: Enabling high-areal-capacity lithium-sulfur batteries: designing anisotropic and low-tortuosity porous architectures. ACS Nano 11, 4801–4807 (2017). https://doi.org/10.1021/acsnano.7b01172
Chodankar, N.R., Patil, S.J., Rama Raju, G.S., et al.: Two-dimensional materials for high-energy solid-state asymmetric pseudocapacitors with high mass loadings. Chemsuschem 13, 1582–1592 (2020). https://doi.org/10.1002/cssc.201902339
Liu, T., Zhou, Z.P., Guo, Y.C., et al.: Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings. Nat. Commun. 10, 675 (2019). https://doi.org/10.1038/s41467-019-08644-w
Zhu, G.X., Xi, C.Y., Liu, Y.J., et al.: CN foam loaded with few-layer graphene nanosheets for high-performance supercapacitor electrodes. J. Mater. Chem. A 3, 7591–7599 (2015). https://doi.org/10.1039/c5ta00837a
Li, H., Yuan, D., Tang, C.H., et al.: Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor. Carbon 100, 151–157 (2016). https://doi.org/10.1016/j.carbon.2015.12.075
Wang, H., Min, S.X., Wang, Q., et al.: Nitrogen-doped nanoporous carbon membranes with Co/CoP Janus-type nanocrystals as hydrogen evolution electrode in both acidic and alkaline environments. ACS Nano 11, 4358–4364 (2017). https://doi.org/10.1021/acsnano.7b01946
Shao, Y., Jiang, Z.P., Zhang, Y.J., et al.: All-poly(ionic liquid) membrane-derived porous carbon membranes: scalable synthesis and application for photothermal conversion in seawater desalination. ACS Nano 12, 11704–11710 (2018). https://doi.org/10.1021/acsnano.8b07526
Shen, F., Luo, W., Dai, J.Q., et al.: Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv. Energy Mater. 6, 1600377 (2016). https://doi.org/10.1002/aenm.201600377
Yousaf, M., Wang, Y.S., Chen, Y.J., et al.: A 3D trilayered CNT/MoSe2/C heterostructure with an expanded MoSe2 interlayer spacing for an efficient sodium storage. Adv. Energy Mater. 9, 1900567 (2019). https://doi.org/10.1002/aenm.201900567
Liu, Y., Fang, Y.J., Zhao, Z.W., et al.: A ternary Fe1−xS@Porous carbon nanowires/reduced graphene oxide hybrid film electrode with superior volumetric and gravimetric capacities for flexible sodium ion batteries. Adv. Energy Mater. 9, 1803052 (2019). https://doi.org/10.1002/aenm.201803052
Li, P., Li, H., Han, D.L., et al.: Packing activated carbons into dense graphene network by capillarity for high volumetric performance supercapacitors. Adv. Sci. 6, 1802355 (2019). https://doi.org/10.1002/advs.201802355
Han, D.L., Weng, Z., Li, P., et al.: Electrode thickness matching for achieving high-volumetric-performance lithium-ion capacitors. Energy Storage Mater. 18, 133–138 (2019). https://doi.org/10.1016/j.ensm.2019.01.020
Cho, S.J., Choi, K.H., Yoo, J.T., et al.: Hetero-nanonet rechargeable paper batteries: toward ultrahigh energy density and origami foldability. Adv. Funct. Mater. 25, 6029–6040 (2015). https://doi.org/10.1002/adfm.201502833
Kim, J.M., Park, C.H., Wu, Q.L., et al.: 1D building blocks-intermingled heteronanomats as a platform architecture for high-performance ultrahigh-capacity lithium-ion battery cathodes. Adv. Energy Mater. 6, 1501594 (2016). https://doi.org/10.1002/aenm.201501594
Cabana, J., Casas-Cabanas, M., Omenya, F.O., et al.: Composition-structure relationships in the Li-ion battery electrode material LiNi0.5Mn1.5O4. Chem. Mater. 24, 2952–2964 (2012). https://doi.org/10.1021/cm301148d
de Biasi, L., Kondrakov, A.O., Geßwein, H., et al.: Between Scylla and Charybdis: balancing among structural stability and energy density of layered NCM cathode materials for advanced lithium-ion batteries. J. Phys. Chem. C 121, 26163–26171 (2017). https://doi.org/10.1021/acs.jpcc.7b06363
Ashton, T.E., Baker, P.J., Bauer, D., et al.: Multiple diffusion pathways in LixNi0.77Co0.14Al0.09O2 (NCA) Li-ion battery cathodes. J. Mater. Chem. A 8, 11545–11552 (2020). https://doi.org/10.1039/D0TA03809A
Kim, S.J., Naguib, M., Zhao, M.Q., et al.: High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries. Electrochim. Acta 163, 246–251 (2015). https://doi.org/10.1016/j.electacta.2015.02.132
Liu, C.Y., Xu, F., Liu, Y.L., et al.: High mass loading ultrathick porous Li4Ti5O12 electrodes with improved areal capacity fabricated via low temperature direct writing. Electrochim. Acta 314, 81–88 (2019). https://doi.org/10.1016/j.electacta.2019.05.082
Haridas, A.K., Gangaja, B., Srikrishnarka, P., et al.: Spray pyrolysis-deposited nanoengineered TiO2 thick films for ultra-high areal and volumetric capacity lithium ion battery applications. J. Power Sources 345, 50–58 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.136
Noelle, D.J., Wang, M., Qiao, Y.: Improved safety and mechanical characterizations of thick lithium-ion battery electrodes structured with porous metal current collectors. J. Power Sources 399, 125–132 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.076
Sotomayor, M.E., Torre-Gamarra, C.D.L., Levenfeld, B., et al.: Ultra-thick battery electrodes for high gravimetric and volumetric energy density Li-ion batteries. J. Power Sources 437, 226923 (2019). https://doi.org/10.1016/j.jpowsour.2019.226923
Sun, C., Liu, S.R., Shi, X.L., et al.: 3D printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery. Chem. Eng. J. 381, 122641 (2020). https://doi.org/10.1016/j.cej.2019.122641
Wang, J.W., Sun, Q., Gao, X.J., et al.: Toward high areal energy and power density electrode for Li-ion batteries via optimized 3D printing approach. ACS Appl. Mater. Interfaces 10, 39794–39801 (2018). https://doi.org/10.1021/acsami.8b14797
Wang, Z.P., Wang, Y.S., Chen, Y.J., et al.: Reticulate dual-nanowire aerogel for multifunctional applications: a high-performance strain sensor and a high areal capacity rechargeable anode. Adv. Funct. Mater. 29, 1807467 (2019). https://doi.org/10.1002/adfm.201807467
Pan, L., Wei, Y.C., Sun, Z.M., et al.: Layered hydrotalcite derived holey porous cobalt oxide nanosheets coated with nitrogen-doped carbon for high-mass-loading Li-ion storage. J. Mater. Chem. A 8, 26150–26157 (2020). https://doi.org/10.1039/d0ta08789k
Tian, T., Lu, L.L., Yin, Y.C., et al.: Multiscale designed niobium titanium oxide anode for fast charging lithium ion batteries. Adv. Funct. Mater. 166, 2007419 (2021). https://doi.org/10.1002/adfm.202007419
Wei, T.S., Ahn, B.Y., Grotto, J., et al.: 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 30, 1703027 (2018). https://doi.org/10.1002/adma.201703027
Li, G., Ouyang, T., Xiong, T.Z., et al.: All-carbon-frameworks enabled thick electrode with exceptional high-areal-capacity for Li-Ion storage. Carbon 174, 1–9 (2021). https://doi.org/10.1016/j.carbon.2020.12.018
Huang, C., Dontigny, M., Zaghib, K., et al.: Low-tortuosity and graded lithium ion battery cathodes by ice templating. J. Mater. Chem. A 7, 21421–21431 (2019). https://doi.org/10.1039/C9TA07269A
Elango, R., Demortière, A., de Andrade, V., et al.: Thick binder-free electrodes for Li-ion battery fabricated using templating approach and spark plasma sintering reveals high areal capacity. Adv. Energy Mater. 8, 1703031 (2018). https://doi.org/10.1002/aenm.201703031
Li, C.C., Zhu, L., Qi, S.Y., et al.: Ultrahigh-areal-capacity battery anodes enabled by free-standing vanadium Nitride@N-doped carbon/graphene architecture. ACS Appl. Mater. Interfaces 12, 49607–49616 (2020). https://doi.org/10.1021/acsami.0c13859
Oh, D.Y., Nam, Y.J., Park, K.H., et al.: Slurry-fabricable Li+-conductive polymeric binders for practical all-solid-state lithium-ion batteries enabled by solvate ionic liquids. Adv. Energy Mater. 9, 1802927 (2019). https://doi.org/10.1002/aenm.201802927
Peled, E., Patolsky, F., Golodnitsky, D., et al.: Tissue-like silicon nanowires-based three-dimensional anodes for high-capacity lithium ion batteries. Nano Lett. 15, 3907–3916 (2015). https://doi.org/10.1021/acs.nanolett.5b00744
Abe, H., Kubota, M., Nemoto, M., et al.: High-capacity thick cathode with a porous aluminium current collector for lithium secondary batteries. J. Power Sources 334, 78–85 (2016). https://doi.org/10.1016/j.jpowsour.2016.10.016
de la Torre-Gamarra, C., Sotomayor, M.E., Sanchez, J.Y., et al.: High mass loading additive-free LiFePO4 cathodes with 500 μm thickness for high areal capacity Li-ion batteries. J. Power Sources 458, 228033 (2020). https://doi.org/10.1016/j.jpowsour.2020.228033
Sotomayor, M.E., de la Torre-Gamarra, C., Bucheli, W., et al.: Additive-free Li4Ti5O12 thick electrodes for Li-ion batteries with high electrochemical performance. J. Mater. Chem. A 6, 5952–5961 (2018). https://doi.org/10.1039/c7ta10683a
Wu, F.X., Yushin, G.: Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 10, 435–459 (2017). https://doi.org/10.1039/c6ee02326f
Ni, Q., Zheng, L.M., Bai, Y., et al.: An extremely fast charging Li3V2(PO4)3 cathode at a 4.8 V cutoff voltage for Li-ion batteries. ACS Energy Lett. 5, 1763–1770 (2020). https://doi.org/10.1021/acsenergylett.0c00702
Liu, H., Zhu, Z., Yan, Q., et al.: A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 585, 63–67 (2020). https://doi.org/10.1038/s41586-020-2637-6
Xu, J.T., Dou, Y.H., Wei, Z.X., et al.: Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Adv. Sci. 4, 1700146 (2017). https://doi.org/10.1002/advs.201700146
Ding, Y.L., Cano, Z.P., Yu, A.P., et al.: Automotive Li-ion batteries: current status and future perspectives. Electrochem. Energy Rev. 2, 1–28 (2019). https://doi.org/10.1007/s41918-018-0022-z
Lu, Y., Yu, L., Lou, X.W.: Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 4, 972–996 (2018). https://doi.org/10.1016/j.chempr.2018.01.003
Aravindan, V., Lee, Y.S., Madhavi, S.: Research progress on negative electrodes for practical Li-ion batteries: beyond carbonaceous anodes. Adv. Energy Mater. 5, 1402225 (2015). https://doi.org/10.1002/aenm.201402225
Nitta, N., Wu, F.X., Lee, J.T., et al.: Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
Chen, K.H., Namkoong, M.J., Goel, V., et al.: Efficient fast-charging of lithium-ion batteries enabled by laser-patterned three-dimensional graphite anode architectures. J. Power Sources 471, 228475 (2020). https://doi.org/10.1016/j.jpowsour.2020.228475
Yuan, T., Tan, Z.P., Ma, C.R., et al.: Challenges of spinel Li4Ti5O12 for lithium-ion battery industrial applications. Adv. Energy Mater. 7, 1601625 (2017). https://doi.org/10.1002/aenm.201601625
Li, H., Guo, S.T., Wang, L.B., et al.: Thermally durable lithium-ion capacitors with high energy density from all hydroxyapatite nanowire-enabled fire-resistant electrodes and separators. Adv. Energy Mater. 9, 1902497 (2019). https://doi.org/10.1002/aenm.201902497
Wang, Y., Luo, S.N., Chen, M., et al.: Uniformly confined germanium quantum dots in 3D ordered porous carbon framework for high-performance Li-ion battery. Adv. Funct. Mater. 30, 2000373 (2020). https://doi.org/10.1002/adfm.202000373
Yan, Y.H., Xu, H.Y., Peng, C.X., et al.: 3D phosphorus-carbon electrode with aligned nanochannels promise high-areal-capacity and cyclability in lithium-ion battery. Appl. Surf. Sci. 489, 734–740 (2019). https://doi.org/10.1016/j.apsusc.2019.05.329
Wang, L., Liu, T.F., Peng, X., et al.: Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Funct. Mater. 28, 1704858 (2018). https://doi.org/10.1002/adfm.201704858
Evanoff, K., Khan, J., Balandin, A.A., et al.: Towards ultrathick battery electrodes: aligned carbon nanotube-enabled architecture. Adv. Mater. 24, 533–537 (2012). https://doi.org/10.1002/adma.201103044
Lim, E., Jo, C., Kim, H., et al.: Facile synthesis of Nb2O5@Carbon core-shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano 9, 7497–7505 (2015). https://doi.org/10.1021/acsnano.5b02601
Wang, X.L., Li, G., Chen, Z., et al.: High-performance supercapacitors based on nanocomposites of Nb2O5 nanocrystals and carbon nanotubes. Adv. Energy Mater. 1, 1089–1093 (2011). https://doi.org/10.1002/aenm.201100332
Wang, X., Yan, C.Y., Yan, J., et al.: Orthorhombic niobium oxide nanowires for next generation hybrid supercapacitor device. Nano Energy 11, 765–772 (2015). https://doi.org/10.1016/j.nanoen.2014.11.020
Sun, H., Mei, L., Liang, J., et al.: Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017). https://doi.org/10.1126/science.aam5852
Sun, P.C., Davis, J., Cao, L.X., et al.: High capacity 3D structured tin-based electroplated Li-ion battery anodes. Energy Storage Mater. 17, 151–156 (2019). https://doi.org/10.1016/j.ensm.2018.11.017
Zhao, Y.T., Huang, G.S., Li, Y.L., et al.: Three-dimensional carbon/ZnO nanomembrane foam as an anode for lithium-ion battery with long-life and high areal capacity. J. Mater. Chem. A 6, 7227–7235 (2018). https://doi.org/10.1039/c8ta00940f
Kim, C., Hwang, G., Jung, J.W., et al.: Fast, scalable synthesis of micronized Ge3N4@C with a high tap density for excellent lithium storage. Adv. Funct. Mater. 27, 1605975 (2017). https://doi.org/10.1002/adfm.201605975
Liang, J.F., Sun, H.T., Zhao, Z.P., et al.: Ultra-high areal capacity realized in three-dimensional holey graphene/SnO2 composite anodes. iScience 19, 728–736 (2019). https://doi.org/10.1016/j.isci.2019.08.025
Song, J.X., Zhou, M.J., Yi, R., et al.: Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Funct. Mater. 24, 5904–5910 (2014). https://doi.org/10.1002/adfm.201401269
Luo, W., Chen, X.Q., Xia, Y., et al.: Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv. Energy Mater. 7, 1701083 (2017). https://doi.org/10.1002/aenm.201701083
Zhou, M., Li, X.L., Wang, B., et al.: High-performance silicon battery anodes enabled by engineering graphene assemblies. Nano Lett. 15, 6222–6228 (2015). https://doi.org/10.1021/acs.nanolett.5b02697
Koo, B., Kim, H., Cho, Y., et al.: A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem. Int. Ed. 51, 8762–8767 (2012). https://doi.org/10.1002/anie.201201568
Bie, Y.T., Yang, J., Liu, X.L., et al.: Polydopamine wrapping silicon cross-linked with polyacrylic acid as high-performance anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 8, 2899–2904 (2016). https://doi.org/10.1021/acsami.5b10616
Wang, J., Meng, X.C., Fan, X.L., et al.: Scalable synthesis of defect abundant Si nanorods for high-performance Li-ion battery anodes. ACS Nano 9, 6576–6586 (2015). https://doi.org/10.1021/acsnano.5b02565
Xu, Q., Li, J.Y., Sun, J.K., et al.: Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv. Energy Mater. 7, 1601481 (2017). https://doi.org/10.1002/aenm.201601481
Xu, Q., Sun, J.K., Li, J.Y., et al.: Scalable synthesis of spherical Si/C granules with 3D conducting networks as ultrahigh loading anodes in lithium-ion batteries. Energy Storage Mater. 12, 54–60 (2018). https://doi.org/10.1016/j.ensm.2017.11.015
Li, X., Gu, M., Hu, S., et al.: Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 5, 4105 (2014). https://doi.org/10.1038/ncomms5105
Lyu, Y.C., Wu, X., Wang, K., et al.: An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202000982
Wang, J.J., Sun, X.L.: Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ. Sci. 8, 1110–1138 (2015). https://doi.org/10.1039/C4EE04016C
Kang, Y.S., Kim, D.Y., Yoon, J., et al.: Shape control of hierarchical lithium cobalt oxide using biotemplates for connected nanoparticles. J. Power Sources 436, 226836 (2019). https://doi.org/10.1016/j.jpowsour.2019.226836
Shi, B.H., Shang, Y.Y., Pei, Y., et al.: Low tortuous, highly conductive, and high-areal-capacity battery electrodes enabled by through-thickness aligned carbon fiber framework. Nano Lett. 20, 5504–5512 (2020). https://doi.org/10.1021/acs.nanolett.0c02053
Wu, X.S., Xia, S.X., Huang, Y.Q., et al.: High-performance, low-cost, and dense-structure electrodes with high mass loading for lithium-ion batteries. Adv. Funct. Mater. 29, 1903961 (2019). https://doi.org/10.1002/adfm.201903961
Li, Y., Chen, M.H., Liu, B., et al.: Heteroatom doping: an effective way to boost sodium ion storage. Adv. Energy Mater. 10, 2000927 (2020). https://doi.org/10.1002/aenm.202000927
Lao, M.M., Zhang, Y., Luo, W.B., et al.: Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater. 29, 1700622 (2017). https://doi.org/10.1002/adma.201700622
Saurel, D., Orayech, B., Xiao, B.W., et al.: From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv. Energy Mater. 8, 1703268 (2018). https://doi.org/10.1002/aenm.201703268
Xu, C.Y., Kou, X.D., Cao, B.K., et al.: Hierarchical graphene@TiO2 sponges for sodium-ion storage with high areal capacity and robust stability. Electrochim. Acta 355, 136782 (2020). https://doi.org/10.1016/j.electacta.2020.136782
Liu, L.L., Qi, X.G., Ma, Q., et al.: Toothpaste-like electrode: a novel approach to optimize the interface for solid-state sodium-ion batteries with ultralong cycle life. ACS Appl. Mater. Interfaces 8, 32631–32636 (2016). https://doi.org/10.1021/acsami.6b11773
He, Y.W., Bai, P.X., Gao, S.Y., et al.: Marriage of an ether-based electrolyte with hard carbon anodes creates superior sodium-ion batteries with high mass loading. ACS Appl. Mater. Interfaces 10, 41380–41388 (2018). https://doi.org/10.1021/acsami.8b15274
Fu, H., Xu, Z.W., Li, R.Z., et al.: Network carbon with macropores from apple pomace for stable and high areal capacity of sodium storage. ACS Sustain. Chem. Eng. 6, 14751–14758 (2018). https://doi.org/10.1021/acssuschemeng.8b03297
Yang, T., Niu, X., Qian, T., et al.: Half and full sodium-ion batteries based on maize with high-loading density and long-cycle life. Nanoscale 8, 15497–15504 (2016). https://doi.org/10.1039/c6nr04424g
Yu, S.C., Liu, Z.G., Tempel, H., et al.: Self-standing NASICON-type electrodes with high mass loading for fast-cycling all-phosphate sodium-ion batteries. J. Mater. Chem. A 6, 18304–18317 (2018). https://doi.org/10.1039/C8TA07313A
Yousaf, M., Wang, Z.P., Wang, Y.S., et al.: Core-shell FeSe2/C nanostructures embedded in a carbon framework as a free standing anode for a sodium ion battery. Small 16, 2002200 (2020). https://doi.org/10.1002/smll.202002200
Liu, Y.P., He, X.Y., Hanlon, D., et al.: Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries. ACS Nano 10, 8821–8828 (2016). https://doi.org/10.1021/acsnano.6b04577
Wang, H.Q., Wang, R.H., Song, Z.H., et al.: A novel aqueous Li+ (or Na+)/Br− hybrid-ion battery with super high areal capacity and energy density. J. Mater. Chem. A 7, 13050–13059 (2019). https://doi.org/10.1039/C9TA03212F
Li, L., Zheng, Y., Zhang, S.L., et al.: Recent progress on sodium ion batteries: potential high-performance anodes. Energy Environ. Sci. 11, 2310–2340 (2018). https://doi.org/10.1039/C8EE01023D
Li, Z.F., Zheng, Y., Liu, Q.Y., et al.: Recent advances in nanostructured metal phosphides as promising anode materials for rechargeable batteries. J. Mater. Chem. A 8, 19113–19132 (2020). https://doi.org/10.1039/D0TA06533A
Li, Y., Xu, Y.H., Wang, Z.H., et al.: Stable carbon-selenium bonds for enhanced performance in tremella-like 2D chalcogenide battery anode. Adv. Energy Mater. 8, 1800927 (2018). https://doi.org/10.1002/aenm.201800927
Wu, F., Zhang, M.H., Bai, Y., et al.: Lotus seedpod-derived hard carbon with hierarchical porous structure as stable anode for sodium-ion batteries. ACS Appl. Mater. Interfaces 11, 12554–12561 (2019). https://doi.org/10.1021/acsami.9b01419
Wang, Q.D., Zhao, C.L., Lu, Y.X., et al.: Advanced nanostructured anode materials for sodium-ion batteries. Small 13, 1701835 (2017). https://doi.org/10.1002/smll.201701835
Wang, Z.H., Wang, X.R., Bai, Y., et al.: Developing an interpenetrated porous and ultrasuperior hard-carbon anode via a promising molten-salt evaporation method. ACS Appl. Mater. Interfaces 12, 2481–2489 (2020). https://doi.org/10.1021/acsami.9b18495
Li, Y., Yuan, Y.F., Bai, Y., et al.: Insights into the Na+ storage mechanism of phosphorus-functionalized hard carbon as ultrahigh capacity anodes. Adv. Energy Mater. 8, 1702781 (2018). https://doi.org/10.1002/aenm.201702781
Yu, K.H., Zhao, H.C., Wang, X.R., et al.: Hyperaccumulation route to Ca-rich hard carbon materials with cation self-incorporation and interlayer spacing optimization for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 12, 10544–10553 (2020). https://doi.org/10.1021/acsami.9b22745
Li, X., Sun, X.H., Hu, X.D., et al.: Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy 77, 105143 (2020). https://doi.org/10.1016/j.nanoen.2020.105143
Xiong, P.X., Bai, P.X., Li, A., et al.: Bismuth Nanoparticle@Carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries. Adv. Mater. 31, 1904771 (2019). https://doi.org/10.1002/adma.201904771
Han, L., Wang, J., Mu, X., et al.: Anisotropic, low-tortuosity and ultra-thick red P@C-Wood electrodes for sodium-ion batteries. Nanoscale 12, 14642–14650 (2020). https://doi.org/10.1039/d0nr03059g
Park, J., Lee, M., Feng, D.W., et al.: Stabilization of hexaaminobenzene in a 2D conductive metal-organic framework for high power sodium storage. J. Am. Chem. Soc. 140, 10315–10323 (2018). https://doi.org/10.1021/jacs.8b06020
Yu, K.H., Wang, X.R., Yang, H.Y., et al.: Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries. J. Energy Chem. 55, 499–508 (2021). https://doi.org/10.1016/j.jechem.2020.07.025
Liu, X.X., Tan, Y.C., Liu, T.C., et al.: A simple electrode-level chemical presodiation route by solution spraying to improve the energy density of sodium-ion batteries. Adv. Funct. Mater. 29, 1903795 (2019). https://doi.org/10.1002/adfm.201903795
Ni, Q., Dong, R.Q., Bai, Y., et al.: Superior sodium-storage behavior of flexible anatase TiO2 promoted by oxygen vacancies. Energy Storage Mater. 25, 903–911 (2020). https://doi.org/10.1016/j.ensm.2019.09.001
Ni, Q., Bai, Y., Guo, S.N., et al.: Carbon nanofiber elastically confined nanoflowers: a highly efficient design for molybdenum disulfide-based flexible anodes toward fast sodium storage. ACS Appl. Mater. Interfaces 11, 5183–5192 (2019). https://doi.org/10.1021/acsami.8b21729
Zhang, Z.Y., Yoshikawa, H., Awaga, K.: Monitoring the solid-state electrochemistry of Cu(2, 7-AQDC) (AQDC = anthraquinone dicarboxylate) in a lithium battery: coexistence of metal and ligand redox activities in a metal-organic framework. J. Am. Chem. Soc. 136, 16112–16115 (2014). https://doi.org/10.1021/ja508197w
Sun, L., Campbell, M.G., Dincă, M.: Electrically conductive porous metal-organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016). https://doi.org/10.1002/anie.201506219
Gao, L., Chen, S., Zhang, L.L., et al.: Self-supported Na0.7CoO2 nanosheet arrays as cathodes for high performance sodium ion batteries. J. Power Sources 396, 379–385 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.047
Gao, L., Chen, S., Zhang, L.L., et al.: High areal capacity Na0.67CoO2 bundle array cathode tailored for high-performance sodium-ion batteries. ChemElectroChem 6, 947–952 (2019). https://doi.org/10.1002/celc.201900031
Wang, X.P., Wang, C.Y., Han, K., et al.: A synergistic Na-Mn-O composite cathodes for high-capacity Na-ion storage. Adv. Energy Mater. 8, 1802180 (2018). https://doi.org/10.1002/aenm.201802180
Lv, Z., Ling, M.X., Yi, H.M., et al.: Electrode design for high-performance sodium-ion batteries: coupling nanorod-assembled Na3V2(PO4)3@C microspheres with a 3D conductive charge transport network. ACS Appl. Mater. Interfaces 12, 13869–13877 (2020). https://doi.org/10.1021/acsami.9b22746
Xiang, X.D., Zhang, K., Chen, J.: Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 27, 5343–5364 (2015). https://doi.org/10.1002/adma.201501527
Kang, S.M., Park, J.H., Jin, A.H., et al.: Na+/vacancy disordered P2-Na0.67Co1−xTixO2: high-energy and high-power cathode materials for sodium ion batteries. ACS Appl. Mater. Interfaces 10, 3562–3570 (2018). https://doi.org/10.1021/acsami.7b16077
Du, K., Zhu, J.Y., Hu, G.R., et al.: Exploring reversible oxidation of oxygen in a manganese oxide. Energy Environ. Sci. 9, 2575–2577 (2016). https://doi.org/10.1039/c6ee01367h
Li, H., Bai, Y., Wu, F., et al.: Na-rich Na3+xV2−xNix(PO4)3/C for sodium ion batteries: controlling the doping site and improving the electrochemical performances. ACS Appl. Mater. Interfaces 8, 27779–27787 (2016). https://doi.org/10.1021/acsami.6b09898
Ni, Q., Bai, Y., Wu, F., et al.: Polyanion-type electrode materials for sodium-ion batteries. Adv. Sci. 4, 1600275 (2017). https://doi.org/10.1002/advs.201600275
Wu, F., Zhu, N., Bai, Y., et al.: Unveil the mechanism of solid electrolyte interphase on Na3V2(PO4)3 formed by a novel NaPF6/BMITFSI ionic liquid electrolyte. Nano Energy 51, 524–532 (2018). https://doi.org/10.1016/j.nanoen.2018.07.003
Ni, Q., Bai, Y., Li, Y., et al.: 3D electronic channels wrapped large-sized Na3V2(PO4)3 as flexible electrode for sodium-ion batteries. Small 14, 1702864 (2018). https://doi.org/10.1002/smll.201702864
Hwang, J.Y., Myung, S.T., Sun, Y.K.: Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 28, 1802938 (2018). https://doi.org/10.1002/adfm.201802938
Kim, H., Kim, J.C., Bianchini, M., et al.: Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 8, 1702384 (2018). https://doi.org/10.1002/aenm.201702384
Wei, S.Y., Choudhury, S., Tu, Z.Y., et al.: Electrochemical interphases for high-energy storage using reactive metal anodes. Acc. Chem. Res. 51, 80–88 (2018). https://doi.org/10.1021/acs.accounts.7b00484
Fan, L., Ma, R.F., Zhang, Q.F., et al.: Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem. Int. Ed. 131, 10610–10615 (2019). https://doi.org/10.1002/ange.201904258
Fan, L., Chen, S.H., Ma, R.F., et al.: Ultrastable potassium storage performance realized by highly effective solid electrolyte interphase layer. Small 14, 1801806 (2018). https://doi.org/10.1002/smll.201801806
Wu, Z.B., Liang, G.M., Pang, W.K., et al.: Coupling topological insulator SnSb2Te4 nanodots with highly doped graphene for high-rate energy storage. Adv. Mater. 32, 1905632 (2020). https://doi.org/10.1002/adma.201905632
Yao, K., Xu, Z.W., Ma, M., et al.: Densified metallic MoS2/graphene enabling fast potassium-ion storage with superior gravimetric and volumetric capacities. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202004244
Zhang, C., Lyu, R.Y., Lv, W., et al.: A lightweight 3D Cu nanowire network with phosphidation gradient as current collector for high-density nucleation and stable deposition of lithium. Adv. Mater. 31, 1904991 (2019). https://doi.org/10.1002/adma.201904991
Sun, Z.W., Jin, S., Jin, H.C., et al.: Robust expandable carbon nanotube scaffold for ultrahigh-capacity lithium-metal anodes. Adv. Mater. 30, 1800884 (2018). https://doi.org/10.1002/adma.201800884
Song, H.Y., Chen, X.L., Zheng, G.L., et al.: Dendrite-free composite Li anode assisted by Ag nanoparticles in a wood-derived carbon frame. ACS Appl. Mater. Interfaces 11, 18361–18367 (2019). https://doi.org/10.1021/acsami.9b01694
Deng, W., Zhu, W.H., Zhou, X.F., et al.: Regulating capillary pressure to achieve ultralow areal mass loading metallic lithium anodes. Energy Storage Mater. 23, 693–700 (2019). https://doi.org/10.1016/j.ensm.2019.02.027
Zheng, J., Kim, M.S., Tu, Z., et al.: Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chem. Soc. Rev. 49, 2701–2750 (2020). https://doi.org/10.1039/c9cs00883g
Wu, F., Yuan, Y.X., Cheng, X.B., et al.: Perspectives for restraining harsh lithium dendrite growth: towards robust lithium metal anodes. Energy Storage Mater. 15, 148–170 (2018). https://doi.org/10.1016/j.ensm.2018.03.024
Yuan, Y.X., Wu, F., Bai, Y., et al.: Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode. Energy Storage Mater. 16, 411–418 (2019). https://doi.org/10.1016/j.ensm.2018.06.022
Huang, A., Liu, H.D., Manor, O., et al.: Enabling rapid charging lithium metal batteries via surface acoustic wave-driven electrolyte flow. Adv. Mater. 32, 1907516 (2020). https://doi.org/10.1002/adma.201907516
Kim, P.J., Pol, V.G.: High performance lithium metal batteries enabled by surface tailoring of polypropylene separator with a polydopamine/graphene layer. Adv. Energy Mater. 8, 1802665 (2018). https://doi.org/10.1002/aenm.201802665
Liu, H.D., Yue, X.J., Xing, X., et al.: A scalable 3D lithium metal anode. Energy Storage Mater. 16, 505–511 (2019). https://doi.org/10.1016/j.ensm.2018.09.021
Liu, H.D., Wang, X.F., Zhou, H.Y., et al.: Structure and solution dynamics of lithium methyl carbonate as a protective layer for lithium metal. ACS Appl. Energy Mater. 1, 1864–1869 (2018). https://doi.org/10.1021/acsaem.8b00348
Zhou, H.Y., Yu, S.C., Liu, H.D., et al.: Protective coatings for lithium metal anodes: recent progress and future perspectives. J. Power Sources 450, 227632 (2020). https://doi.org/10.1016/j.jpowsour.2019.227632
Yu, L., Chen, S.R., Lee, H., et al.: A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries. ACS Energy Lett. 3, 2059–2067 (2018). https://doi.org/10.1021/acsenergylett.8b00935
Zhang, C., Lv, W., Zhou, G.M., et al.: Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries. Adv. Energy Mater. 8, 1703404 (2018). https://doi.org/10.1002/aenm.201703404
Jin, C.B., Sheng, O.W., Luo, J.M., et al.: 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy 37, 177–186 (2017). https://doi.org/10.1016/j.nanoen.2017.05.015
Zhang, Y., Luo, W., Wang, C., et al.: High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proc. Natl. Acad. Sci. U. S. A. 114, 3584–3589 (2017). https://doi.org/10.1073/pnas.1618871114
Yang, G., Tan, J., Jin, H., et al.: Creating effective nanoreactors on carbon nanotubes with mechanochemical treatments for high-areal-capacity sulfur cathodes and lithium anodes. Adv. Funct. Mater. 28, 1800595 (2018). https://doi.org/10.1002/adfm.201800595
Yao, Y., Wang, H.Y., Yang, H., et al.: A dual-functional conductive framework embedded with TiN-VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li–S full batteries. Adv. Mater. 32, 1905658 (2020). https://doi.org/10.1002/adma.201905658
Zhou, Z.F., Chen, B.B., Fang, T.T., et al.: A multifunctional separator enables safe and durable lithium/magnesium-sulfur batteries under elevated temperature. Adv. Energy Mater. 10, 1902023 (2020). https://doi.org/10.1002/aenm.201902023
Chung, S.H., Manthiram, A.: Designing lithium-sulfur cells with practically necessary parameters. Joule 2, 710–724 (2018). https://doi.org/10.1016/j.joule.2018.01.002
Fu, K.K., Gong, Y.H., Hitz, G.T., et al.: Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ. Sci. 10, 1568–1575 (2017). https://doi.org/10.1039/c7ee01004d
Peng, H.J., Huang, J.Q., Cheng, X.B., et al.: Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. 7, 1700260 (2017). https://doi.org/10.1002/aenm.201700260
Hu, Y., Chen, W., Lei, T., et al.: Strategies toward high-loading lithium–sulfur battery. Adv. Energy Mater. 10, 2000082 (2020). https://doi.org/10.1002/aenm.202000082
Rana, M., Ahad, S.A., Li, M., et al.: Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading. Energy Storage Mater. 18, 289–310 (2019). https://doi.org/10.1016/j.ensm.2018.12.024
Qu, H.T., Zhang, J.J., Du, A.B., et al.: Multifunctional sandwich-structured electrolyte for high-performance lithium–sulfur batteries. Adv. Sci. 5, 1700503 (2018). https://doi.org/10.1002/advs.201700503
Zhang, S.G., Ueno, K., Dokko, K., et al.: Recent advances in electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 5, 1500117 (2015). https://doi.org/10.1002/aenm.201500117
Chen, G.H., Zhang, K., Liu, Y.R., et al.: Flame-retardant gel polymer electrolyte and interface for quasi-solid-state sodium ion batteries. Chem. Eng. J. 401, 126065 (2020). https://doi.org/10.1016/j.cej.2020.126065
Gao, Y.S., Chen, G.H., Wang, X.R., et al.: PY13FSI-infiltrated SBA-15 as nonflammable and high ion-conductive ionogel electrolytes for quasi-solid-state sodium-ion batteries. ACS Appl. Mater. Interfaces 12, 22981–22991 (2020). https://doi.org/10.1021/acsami.0c04878
Wu, F., Zhang, K., Liu, Y.R., et al.: Polymer electrolytes and interfaces toward solid-state batteries: recent advances and prospects. Energy Storage Mater. 33, 26–54 (2020). https://doi.org/10.1016/j.ensm.2020.08.002
Chen, G.H., Ye, L., Zhang, K., et al.: Hyperbranched polyether boosting ionic conductivity of polymer electrolytes for all-solid-state sodium ion batteries. Chem. Eng. J. 394, 124885 (2020). https://doi.org/10.1016/j.cej.2020.124885
Wang, C.W., Fu, K., Kammampata, S.P., et al.: Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120, 4257–4300 (2020). https://doi.org/10.1021/acs.chemrev.9b00427
Liu, J., Zhou, J.Q., Wang, M.F., et al.: A functional-gradient-structured ultrahigh modulus solid polymer electrolyte for all-solid-state lithium metal batteries. J. Mater. Chem. A 7, 24477–24485 (2019). https://doi.org/10.1039/C9TA07876B
Kwak, W.J., Rosy, D.S., et al.: Lithium-oxygen batteries and related systems: potential, status, and future. Chem. Rev. 120, 6626–6683 (2020). https://doi.org/10.1021/acs.chemrev.9b00609
Lin, Y., Moitoso, B., Martinez-Martinez, C., et al.: Ultrahigh-capacity lithium-oxygen batteries enabled by dry-pressed holey graphene air cathodes. Nano Lett. 17, 3252–3260 (2017). https://doi.org/10.1021/acs.nanolett.7b00872
Song, H.Y., Xu, S.M., Li, Y.J., et al.: Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium-oxygen batteries. Adv. Energy Mater. 8, 1701203 (2018). https://doi.org/10.1002/aenm.201701203
Lee, Y., Park, S.H., Kim, S.H., et al.: High-rate and high-areal-capacity air cathodes with enhanced cycle life based on RuO2/MnO2 bifunctional electrocatalysts supported on CNT for pragmatic Li-O2 batteries. ACS Catal. 8, 2923–2934 (2018). https://doi.org/10.1021/acscatal.8b00248
Lacey, S.D., Walsh, E.D., Hitz, E., et al.: Highly compressible, binderless and ultrathick holey graphene-based electrode architectures. Nano Energy 31, 386–392 (2017). https://doi.org/10.1016/j.nanoen.2016.11.005
Zhu, C.L., Du, L., Luo, J.M., et al.: A renewable wood-derived cathode for Li-O2 batteries. J. Mater. Chem. A 6, 14291–14298 (2018). https://doi.org/10.1039/c8ta04703k
Xu, S.M., Chen, C.J., Kuang, Y.D., et al.: Flexible lithium-CO2 battery with ultrahigh capacity and stable cycling. Energy Environ. Sci. 11, 3231–3237 (2018). https://doi.org/10.1039/C8EE01468J
Qiao, Y., Liu, Y., Chen, C.J., et al.: 3D-printed graphene oxide framework with thermal shock synthesized nanoparticles for Li-CO2 batteries. Adv. Funct. Mater. 28, 1805899 (2018). https://doi.org/10.1002/adfm.201805899
Zhao, T., Zhang, G.M., Zhou, F.S., et al.: Toward tailorable Zn-ion textile batteries with high energy density and ultrafast capability: building high-performance textile electrode in 3D hierarchical branched design. Small 14, 1802320 (2018). https://doi.org/10.1002/smll.201802320
Jiao, T.P., Yang, Q., Wu, S.L., et al.: Binder-free hierarchical VS2 electrodes for high-performance aqueous Zn ion batteries towards commercial level mass loading. J. Mater. Chem. A 7, 16330–16338 (2019). https://doi.org/10.1039/C9TA04798K
Zhang, W., Liang, S.Q., Fang, G.Z., et al.: Ultra-high mass-loading cathode for aqueous zinc-ion battery based on graphene-wrapped aluminum vanadate nanobelts. Nano-Micro Lett. 11, 1–12 (2019). https://doi.org/10.1007/s40820-019-0300-2
Wei, T.Y., Li, Q., Yang, G.Z., et al.: Pseudo-Zn-air and Zn-ion intercalation dual mechanisms to realize high-areal capacitance and long-life energy storage in aqueous Zn battery. Adv. Energy Mater. 9, 1901480 (2019). https://doi.org/10.1002/aenm.201901480
Zhang, H.Z., Fang, Y.B., Yang, F., et al.: Aromatic organic molecular crystal with enhanced π–π stacking interaction for ultrafast Zn-ion storage. Energy Environ. Sci. 13, 2515–2523 (2020). https://doi.org/10.1039/d0ee01723j
Ni, Q., Jiang, H., Sandstrom, S., et al.: A Na3V2(PO4)2O1.6F1.4 cathode of Zn-ion battery enabled by a water-in-bisalt electrolyte. Adv. Funct. Mater. 30, 2003511 (2020). https://doi.org/10.1002/adfm.202003511
Yu, P., Zeng, Y.X., Zhang, H.Z., et al.: Flexible Zn-ion batteries: Recent progresses and challenges. Small 15, 1804760 (2019). https://doi.org/10.1002/smll.201804760
Song, M., Tan, H., Chao, D.L., et al.: Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018). https://doi.org/10.1002/adfm.201802564
Wang, Y.R., Wang, C.X., Ni, Z.G., et al.: Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc-organic batteries. Adv. Mater. 32, 2000338 (2020). https://doi.org/10.1002/adma.202000338
Xing, L.L., Owusu, K.A., Liu, X.Y., et al.: Insights into the storage mechanism of VS4 nanowire clusters in aluminum-ion battery. Nano Energy 79, 105384 (2021). https://doi.org/10.1016/j.nanoen.2020.105384
Wang, H.L., Gu, S.C., Bai, Y., et al.: Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries. J. Mater. Chem. A 3, 22677–22686 (2015). https://doi.org/10.1039/C5TA06187C
Zhang, Y., Liu, S.Q., Ji, Y.J., et al.: Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives. Adv. Mater. 30, 1706310 (2018). https://doi.org/10.1002/adma.201706310
Wu, F., Yang, H.Y., Bai, Y., et al.: Paving the path toward reliable cathode materials for aluminum-ion batteries. Adv. Mater. 31, 1806510 (2019). https://doi.org/10.1002/adma.201806510
Gu, S.C., Wang, H.L., Wu, C., et al.: Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Mater. 6, 9–17 (2017). https://doi.org/10.1016/j.ensm.2016.09.001
Zhu, N., Wu, F., Wang, Z.H., et al.: Reversible Al3+ storage mechanism in anatase TiO2 cathode material for ionic liquid electrolyte-based aluminum-ion batteries. J. Energy Chem. 51, 72–80 (2020). https://doi.org/10.1016/j.jechem.2020.03.032
Dong, X.Z., Xu, H.Y., Chen, H., et al.: Commercial expanded graphite as high-performance cathode for low-cost aluminum-ion battery. Carbon 148, 134–140 (2019). https://doi.org/10.1016/j.carbon.2019.03.080
Muñoz-Torrero, D., Molina, A., Palma, J., et al.: Widely commercial carbonaceous materials as cathode for Al-ion batteries. Carbon 167, 475–484 (2020). https://doi.org/10.1016/j.carbon.2020.06.019
Park, J., Xu, Z.L., Yoon, G., et al.: Stable and high-power calcium-ion batteries enabled by calcium intercalation into graphite. Adv. Mater. 32, 1904411 (2020). https://doi.org/10.1002/adma.201904411
Cheng, X., Zhang, Z., Kong, Q., et al.: Highly reversible cuprous mediated cathode chemistry for magnesium batteries. Angew Chem Int Ed Engl 59, 11477–11482 (2020). https://doi.org/10.1002/anie.202002177
Gummow, R.J., Vamvounis, G., Kannan, M.B., et al.: Calcium-ion batteries: current state-of-the-art and future perspectives. Adv. Mater. 30, 1801702 (2018). https://doi.org/10.1002/adma.201801702
Murata, Y., Takada, S., Obata, T., et al.: Effect of water in electrolyte on the Ca2+ insertion/extraction properties of V2O5. Electrochim. Acta 294, 210–216 (2019). https://doi.org/10.1016/j.electacta.2018.10.103
Zhang, Y.F., Geng, H.B., Wei, W.F., et al.: Challenges and recent progress in the design of advanced electrode materials for rechargeable Mg batteries. Energy Storage Mater. 20, 118–138 (2019). https://doi.org/10.1016/j.ensm.2018.11.033
Yoo, H.D., Shterenberg, I., Gofer, Y., et al.: Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 6, 2265 (2013). https://doi.org/10.1039/c3ee40871j
Aravindan, V., Gnanaraj, J., Lee, Y.S., et al.: Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem. Rev. 114, 11619–11635 (2014). https://doi.org/10.1021/cr5000915
Wang, X., Kajiyama, S., Iinuma, H., et al.: Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 6, 6544 (2015). https://doi.org/10.1038/ncomms7544
Yang, J.L., Ju, Z.C., Jiang, Y., et al.: Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30, 1700104 (2018). https://doi.org/10.1002/adma.201700104
Song, Z.Q., Li, W.Y., Bao, Y., et al.: A new route to tailor high mass loading all-solid-state supercapacitor with ultra-high volumetric energy density. Carbon 136, 46–53 (2018). https://doi.org/10.1016/j.carbon.2018.04.036
Vijayakumar, M., Santhosh, R., Adduru, J., et al.: Activated carbon fibres as high performance supercapacitor electrodes with commercial level mass loading. Carbon 140, 465–476 (2018). https://doi.org/10.1016/j.carbon.2018.08.052
Wu, L.L., Liu, M.Q., Huo, S.L., et al.: Mold-casting prepared free-standing activated carbon electrodes for capacitive deionization. Carbon 149, 627–636 (2019). https://doi.org/10.1016/j.carbon.2019.04.102
Ma, X.L., Song, X.Y., Yu, Z.Q., et al.: S-doping coupled with pore-structure modulation to conducting carbon black: toward high mass loading electrical double-layer capacitor. Carbon 149, 646–654 (2019). https://doi.org/10.1016/j.carbon.2019.04.110
Liu, L.Y., Wang, X.H., Izotov, V., et al.: Capacitance of coarse-grained carbon electrodes with thickness up to 800 μm. Electrochim. Acta 302, 38–44 (2019). https://doi.org/10.1016/j.electacta.2019.02.004
Huang, T.Q., Chu, X.Y., Cai, S.Y., et al.: Tri-high designed graphene electrodes for long cycle-life supercapacitors with high mass loading. Energy Storage Mater. 17, 349–357 (2019). https://doi.org/10.1016/j.ensm.2018.07.001
Yuan, G., Liang, Y.R., Hu, H., et al.: Extraordinary thickness-independent electrochemical energy storage enabled by cross-linked microporous carbon nanosheets. ACS Appl. Mater. Interfaces 11, 26946–26955 (2019). https://doi.org/10.1021/acsami.9b06402
Song, Y., Liu, T., Yao, B., et al.: Ostwald ripening improves rate capability of high mass loading manganese oxide for supercapacitors. ACS Energy Lett. 2, 1752–1759 (2017). https://doi.org/10.1021/acsenergylett.7b00405
Huang, Z.H., Song, Y., Feng, D.Y., et al.: High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 12, 3557–3567 (2018). https://doi.org/10.1021/acsnano.8b00621
Li, H., Tao, Y., Zheng, X.Y., et al.: Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ. Sci. 9, 3135–3142 (2016). https://doi.org/10.1039/c6ee00941g
Zhang, M., Yu, X.W., Ma, H.Y., et al.: Robust graphene composite films for multifunctional electrochemical capacitors with an ultrawide range of areal mass loading toward high-rate frequency response and ultrahigh specific capacitance. Energy Environ. Sci. 11, 559–565 (2018). https://doi.org/10.1039/c7ee03349d
VahidMohammadi, A., Moncada, J., Chen, H.Z., et al.: Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. A 6, 22123–22133 (2018). https://doi.org/10.1039/C8TA05807E
Liu, J.C., Li, H., Batmunkh, M., et al.: Structural engineering to maintain the superior capacitance of molybdenum oxides at ultrahigh mass loadings. J. Mater. Chem. A 7, 23941–23948 (2019). https://doi.org/10.1039/C9TA04835A
Cai, X., Song, Y., Wang, S.Q., et al.: Extending the cycle life of high mass loading MoOx electrode for supercapacitor applications. Electrochim. Acta 325, 134877 (2019). https://doi.org/10.1016/j.electacta.2019.134877
Qi, Z., Ye, J.C., Chen, W., et al.: 3D-printed, superelastic polypyrrole-graphene electrodes with ultrahigh areal capacitance for electrochemical energy storage. Adv. Mater. Technol. 3, 1800053 (2018). https://doi.org/10.1002/admt.201800053
Li, X., Shao, J., Kim, S.K., et al.: High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes. Nat. Commun. 9, 2578 (2018). https://doi.org/10.1038/s41467-018-04937-8
Song, Y., Liu, T., Li, M.Y., et al.: Engineering of mesoscale pores in balancing mass loading and rate capability of hematite films for electrochemical capacitors. Adv. Energy Mater. 8, 1801784 (2018). https://doi.org/10.1002/aenm.201801784
Yao, B., Chandrasekaran, S., Zhang, J., et al.: Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3, 459–470 (2019). https://doi.org/10.1016/j.joule.2018.09.020
Guo, S.Q., Li, H.C., Zhang, X., et al.: Lignin carbon aerogel/nickel binary network for cubic supercapacitor electrodes with ultra-high areal capacitance. Carbon (2020). https://doi.org/10.1016/j.carbon.2020.12.051
Liu, K., Mo, R.W., Dong, W.J., et al.: Nature-derived, structure and function integrated ultra-thick carbon electrode for high-performance supercapacitors. J. Mater. Chem. A 8, 20072–20081 (2020). https://doi.org/10.1039/D0TA06108E
Zhao, J., Li, Y.J., Wang, G.L., et al.: Enabling high-volumetric-energy-density supercapacitors: designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes. J. Mater. Chem. A 5, 23085–23093 (2017). https://doi.org/10.1039/C7TA07010A
Lv, Z., Tang, Y., Zhu, Z., et al.: Honeycomb-lantern-inspired 3D stretchable supercapacitors with enhanced specific areal capacitance. Adv. Mater. 30, e1805468 (2018). https://doi.org/10.1002/adma.201805468
Huo, S.L., Liu, M.Q., Wu, L.L., et al.: Synthesis of ultrathin and hierarchically porous carbon nanosheets based on interlayer-confined inorganic/organic coordination for high performance supercapacitors. J. Power Sources 414, 383–392 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.028
Huo, S.L., Liu, M.Q., Wu, L.L., et al.: Methanesulfonic acid-assisted synthesis of N/S co-doped hierarchically porous carbon for high performance supercapacitors. J. Power Sources 387, 81–90 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.061
Wang, J.F., Wang, J.R., Kong, Z., et al.: Conducting-polymer-based materials for electrochemical energy conversion and storage. Adv. Mater. 29, 1703044 (2017). https://doi.org/10.1002/adma.201703044
Zhang, Z.T., Liao, M., Lou, H.Q., et al.: Conjugated polymers for flexible energy harvesting and storage. Adv. Mater. 30, 1704261 (2018). https://doi.org/10.1002/adma.201704261
Liao, C.R., Xiong, F., Li, X.J., et al.: Progress in conductive polymers in fibrous energy devices. Acta Phys. Chim. Sin. 33, 329–343 (2017)
Fan, Z.Y., Islam, N., Bayne, S.B.: Towards kilohertz electrochemical capacitors for filtering and pulse energy harvesting. Nano Energy 39, 306–320 (2017). https://doi.org/10.1016/j.nanoen.2017.06.048
Feng, D.W., Lei, T., Lukatskaya, M.R., et al.: Robust and conductive two-dimensional metal−organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3, 30–36 (2018). https://doi.org/10.1038/s41560-017-0044-5
Yang, Z.Y., Jin, L.J., Lu, G.Q., et al.: Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance. Adv. Funct. Mater. 24, 3917–3925 (2014). https://doi.org/10.1002/adfm.201304091
Li, L., Zhang, N., Zhang, M.Y., et al.: Ag-nanoparticle-decorated 2D titanium carbide (MXene) with superior electrochemical performance for supercapacitors. ACS Sustain. Chem. Eng. 6, 7442–7450 (2018). https://doi.org/10.1021/acssuschemeng.8b00047
Li, L., Zhang, M.Y., Zhang, X.T., et al.: New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors. J. Power Sources 364, 234–241 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.029
Guo, M., Liu, C.B., Zhang, Z.Z., et al.: Flexible Ti3C2Tx@Al electrodes with ultrahigh areal capacitance: in situ regulation of interlayer conductivity and spacing. Adv. Funct. Mater. 28, 1803196 (2018). https://doi.org/10.1002/adfm.201803196
Xia, Y., Mathis, T.S., Zhao, M.Q., et al.: Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409–412 (2018). https://doi.org/10.1038/s41586-018-0109-z
Wang, Y.M., Wang, X., Li, X.L., et al.: Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance. Adv. Funct. Mater. 29, 1900326 (2019). https://doi.org/10.1002/adfm.201900326
Kong, J., Yang, H.C., Guo, X.Z., et al.: High-mass-loading porous Ti3C2Tx films for ultrahigh-rate pseudocapacitors. ACS Energy Lett. 5, 2266–2274 (2020). https://doi.org/10.1021/acsenergylett.0c00704
Wang, Y.M., Lin, X.J., Liu, T., et al.: Wood-derived hierarchically porous electrodes for high-performance all-solid-state supercapacitors. Adv. Funct. Mater. 28, 1806207 (2018). https://doi.org/10.1002/adfm.201806207
Hu, L.Y., Gao, R., Zhang, A.Q., et al.: Cu2+ intercalation activates bulk redox reactions of MnO2 for enhancing capacitive performance. Nano Energy 74, 104891 (2020). https://doi.org/10.1016/j.nanoen.2020.104891
Feng, D.Y., Sun, Z., Huang, Z.H., et al.: Highly loaded manganese oxide with high rate capability for capacitive applications. J. Power Sources 396, 238–245 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.026
Zhang, Y., Yuan, X.M., Lu, W.B., et al.: MnO2 based sandwich structure electrode for supercapacitor with large voltage window and high mass loading. Chem. Eng. J. 368, 525–532 (2019). https://doi.org/10.1016/j.cej.2019.02.206
Chen, C.F., Verma, A., Mukherjee, P.P.: Probing the role of electrode microstructure in the lithium-ion battery thermal behavior. J. Electrochem. Soc. 164, E3146–E3158 (2017). https://doi.org/10.1149/2.0161711jes
Yang, C., Xin, S., Mai, L.Q., et al.: Materials design for high-safety sodium-ion battery. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202000974
Li, H., Qi, C.S., Tao, Y., et al.: Quantifying the volumetric performance metrics of supercapacitors. Adv. Energy Mater. 9, 1900079 (2019). https://doi.org/10.1002/aenm.201900079
Xiao, K.F., Pan, J., Liang, K., et al.: Layered conductive polymer-inorganic anion network for high-performance ultra-loading capacitive electrodes. Energy Storage Mater. 14, 90–99 (2018). https://doi.org/10.1016/j.ensm.2018.02.018
Xu, Y., Tao, Y., Zheng, X.Y., et al.: A metal-free supercapacitor electrode material with a record high volumetric capacitance over 800 F cm−3. Adv. Mater. 27, 8082–8087 (2015). https://doi.org/10.1002/adma.201504151
Bu, Y.F., Sun, T., Cai, Y.J., et al.: Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh-volumetric-performance supercapacitors. Adv. Mater. 29, 1700470 (2017). https://doi.org/10.1002/adma.201700470
Ghidiu, M., Lukatskaya, M.R., Zhao, M.Q., et al.: Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
Murali, S., Quarles, N., Zhang, L.L., et al.: Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes. Nano Energy 2, 764–768 (2013). https://doi.org/10.1016/j.nanoen.2013.01.007
Xu, Y., Lin, Z., Zhong, X., et al.: Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014). https://doi.org/10.1038/ncomms5554
Ma, H.Y., Kong, D.B., Xu, Y., et al.: Disassembly-reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor. Small 13, 1701026 (2017). https://doi.org/10.1002/smll.201701026
Zhao, X., Zhang, L.L., Murali, S., et al.: Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. ACS Nano 6, 5404–5412 (2012). https://doi.org/10.1021/nn3012916
Yang, X., Cheng, C., Wang, Y., et al.: Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534–537 (2013). https://doi.org/10.1126/science.1239089
Acerce, M., Voiry, D., Chhowalla, M.: Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015). https://doi.org/10.1038/nnano.2015.40
Zhang, W., Topsakal, M., Cama, C., et al.: Multi-stage structural transformations in zero-strain lithium titanate unveiled by in situ X-ray absorption fingerprints. J. Am. Chem. Soc. 139, 16591–16603 (2017). https://doi.org/10.1021/jacs.7b07628
Ciez, R.E., Steingart, D.: Asymptotic cost analysis of intercalation lithium-ion systems for multi-hour duration energy storage. Joule 4, 597–614 (2020). https://doi.org/10.1016/j.joule.2020.01.007
Adams, R.A., Varma, A., Pol, V.G.: Carbon anodes for nonaqueous alkali metal-ion batteries and their thermal safety aspects. Adv. Energy Mater. 9, 1900550 (2019). https://doi.org/10.1002/aenm.201900550
Mei, W.X., Chen, H.D., Sun, J.H., et al.: The effect of electrode design parameters on battery performance and optimization of electrode thickness based on the electrochemical–thermal coupling model. Sustain. Energy Fuels 3, 148–165 (2019). https://doi.org/10.1039/c8se00503f
Lin, H.P., Chua, D., Salomon, M., et al.: Low-temperature behavior of Li-ion cells. Electrochem. Solid-State Lett. 4, A71 (2001). https://doi.org/10.1149/1.1368736
Spotnitz, R., Franklin, J.: Abuse behavior of high-power, lithium-ion cells. J. Power Sources 113, 81–100 (2003). https://doi.org/10.1016/S0378-7753(02)00488-3
Li, H., Wu, D.B., Wu, J., et al.: Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries. Adv. Mater. 29, 1703548 (2017). https://doi.org/10.1002/adma.201703548
Lei, D.N., Benson, J., Magasinski, A., et al.: Transformation of bulk alloys to oxide nanowires. Science 355, 267–271 (2017). https://doi.org/10.1126/science.aal2239
Wang, J.H., Yamada, Y., Sodeyama, K., et al.: Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3, 22–29 (2018). https://doi.org/10.1038/s41560-017-0033-8
Wang, Z.Q., Tan, R., Wang, H.B., et al.: A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Adv. Mater. 30, 1704436 (2018). https://doi.org/10.1002/adma.201704436
Simon, P., Gogotsi, Y.: Capacitive energy storage in nanostructured carbon-electrolyte systems. Acc. Chem. Res. 46, 1094–1103 (2013). https://doi.org/10.1021/ar200306b
Thomitzek, M., Schmidt, O., Röder, F., et al.: Simulating process-product interdependencies in battery production systems. Procedia CIRP 72, 346–351 (2018). https://doi.org/10.1016/j.procir.2018.03.056
Shi, S.Q., Gao, J., Liu, Y., et al.: Multi-scale computation methods: their applications in lithium-ion battery research and development. Chin. Phys. B 25, 178–201 (2016)
Pecher, O., Carretero-González, J., Griffith, K.J., et al.: Materials’ methods: NMR in battery research. Chem. Mater. 29, 213–242 (2017). https://doi.org/10.1021/acs.chemmater.6b03183
Li, Y.Z., Yan, K., Lee, H.W., et al.: Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029 (2016). https://doi.org/10.1038/nenergy.2015.29
Li, Y., Li, Y., Pei, A., et al.: Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017). https://doi.org/10.1126/science.aam6014
Nelson, J., Misra, S., Yang, Y., et al.: In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J. Am. Chem. Soc. 134, 6337–6343 (2012). https://doi.org/10.1021/ja2121926
Wood, D.L., Li, J.L., Daniel, C.: Prospects for reducing the processing cost of lithium ion batteries. J. Power Sources 275, 234–242 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.019