High-Frequency Noise Peaks in Mo/Au Superconducting Transition-Edge Sensor Microcalorimeters

Springer Science and Business Media LLC - Tập 200 - Trang 192-199 - 2020
N. A. Wakeham1,2, J. S. Adams1,2, S. R. Bandler1, S. Beaumont1,2, M. P. Chang1,3, J. A. Chervenak1, A. M. Datesman1,3, M. E. Eckart4, F. M. Finkbeiner1,5, J. Y. Ha1,6, R. Hummatov1,2, R. L. Kelley1, C. A. Kilbourne1, A. R. Miniussi1,2, F. S. Porter1, J. E. Sadleir1, K. Sakai1,2, S. J. Smith1,2, E. J. Wassell1,3
1NASA Goddard Space Flight Center (GSFC), Greenbelt, USA
2CRESST II – University of Maryland, Baltimore County, USA
3Science Systems and Applications, Inc. (SSAI), Lanham, USA
4Lawrence Livermore National Laboratory (LLNL), Livermore, USA
5Sigma Space Corp., Lanham, USA
6SB Microsystems, Glen Burnie, USA

Tóm tắt

The measured noise in Mo/Au transition-edge sensor (TES) microcalorimeters produced at NASA has recently been shown to be well described by a two-body electro-thermal model with a finite thermal conductance between the X-ray absorber and the TES. In this article, we present observations of a high-frequency peak in the measured current noise in some of these devices. The peak is associated with an oscillatory component of the TES response that is not predicted in a single-body model but can be qualitatively described by the two-body model.

Tài liệu tham khảo

D. Barret, T.L. Trong, J.-W. den Herder, L. Piro, X. Barcons, J. Huovelin, R. Kelley, J.M. Mas-Hesse, K. Mitsuda, S. Paltani, G. Rauw, A. Rożanska, J. Wilms, M. Barbera, E. Bozzo, M.T. Ceballos, I. Charles, A. De- courchelle, R. den Hartog, J.-M. Duval, F. Fiore, F. Gatti, A. Goldwurm, B. Jackson, P. Jonker, C. Kilbourne, C. Macculi, M. Mendez, S. Molendi, P. Orleanski, F. Pajot, E. Pointecouteau, F. Porter, G.W. Pratt, D. Prêle, L. Ravera, E. Renotte, J. Schaye, K. Shinozaki, L. Valenziano, J. Vink, N. Webb, N. Yamasaki, F. Delcelier-Douchin, M.L. Du, J.-M. Mes-nager, A. Pradines, G. Branduardi-Raymont, M. Dadina, A. Finoguenov, Y. Fukazawa, A. Janiuk, J. Miller, Y. Nazé, F. Nicastro, S. Sciortino, J.M. Torrejon, H. Geoffray, I. Hernandez, L. Luno, P. Peille, J. André, C. Daniel, C. Etcheverry, E. Gloaguen, J. Hassin, G. Hervet, I. Maussang, J. Moueza, A. Paillet, B. Vella, G.C. Garrido, J.-C. Damery, C. Panem, J. Panh, S. Ban- dler, J.-M. Biffi, K. Boyce, A. Clénet, M. DiPirro, P. Jamotton, S. Lotti, D. Schwander, S. Smith, B.-J. van Leeuwen, H. van Weers, T. Brand, B. Cobo, T. Dauser, J. de Plaa, E. Cucchetti, Proc. SPIE, 9905, 9905 (2016). https://doi.org/10.1117/12.2232432 M.A. Lindeman, S. Bandler, R.P. Brekosky, J.A. Chervenak, E. Figueroa-Feliciano, F.M. Finkbeiner, M.J. Li, C.A. Kilbourne, Rev. Sci. Instrum. 75, 1283 (2004). https://doi.org/10.1063/1.1711144 K. Irwin, Nucl. Instrum. Methods Phys. Res. Sect. A 559, 718 (2006). https://doi.org/10.1016/j.nima.2005.12.115 S.J. Smith, J.S. Adams, C.N. Bailey, S.R. Bandler, S.E. Busch, J.A. Chervenak, M.E. Eckart, F.M. Finkbeiner, C.A. Kilbourne, R.L. Kelley, S.-J. Lee, J.-P. Porst, F.S. Porter, J.E. Sadleir, J. Appl. Phys. 114, 074513 (2013). https://doi.org/10.1063/1.4818917 J. Ullom, W. Doriese, G. Hilton, J. Beall, S. Deiker, K. Irwin, C. Reintsema, L. Vale, Y. Xu, Nucl. Instrum. Methods Phys. Res. Sect. A 520, 333 (2004). https://doi.org/10.1016/j.nima.2003.11.260 N.A. Wakeham, J.S. Adams, S.R. Bandler, J.A. Chervenak, A.M. Datesman, M.E. Eckart, F.M. Finkbeiner, R.L. Kelley, C.A. Kilbourne, A.R. Miniussi, F.S. Porter, J.E. Sadleir, K. Sakai, S.J. Smith, E.J. Wassell, W. Yoon, J. Low Temp. Phys. 193, 231 (2018). https://doi.org/10.1007/s10909-018-1898-z C.M. Knoedler, J. Appl. Phys. 54, 2773 (1983). https://doi.org/10.1063/1.332306 M. Galeazzi, I.E.E.E. Trans, Appl. Supercond. 21, 267 (2011). https://doi.org/10.1109/TASC.2010.2091243 M. Lindeman, Microcalorimetry and the Transition-Edge Sensor, Ph.D. thesis, University of California at Davis (2000) H. Hoevers, A. Bento, M. Bruijn, L. Gottardi, M. Korevaar, W. Mels, P. de Korte, Nucl. Instrum. Methods Phys. Res. Sect. A 444, 192 (2000). https://doi.org/10.1016/S0168-9002(99)01356-X N.A. Wakeham, J.S. Adams, S.R. Bandler, S. Beaumont, J.A. Chervenak, A.M. Datesman, M.E. Eckart, F.M. Finkbeiner, R. Hummatov, R.L. Kelley, C.A. Kilbourne, A.R. Miniussi, F.S. Porter, J.E. Sadleir, K. Sakai, S.J. Smith, E.J. Wassell, J. Appl. Phys. 125, 164503 (2019). https://doi.org/10.1063/1.5086045 K.D. Irwin, G.C. Hilton, Cryogenic Particle Detection, vol. 99 (Springer, Berlin, 2005) I.J. Maasilta, AIP Adv. 2, 042110 (2012). https://doi.org/10.1063/1.4759111 E. Figueroa-Feliciano, J. Appl. Phys. 99, 114513 (2006). https://doi.org/10.1063/1.2191449 D.A. Bennett, R.D. Horansky, A.S. Hoover, N.J. Hoteling, M.W. Rabin, D.R. Schmidt, D.S. Swetz, L.R. Vale, J.N. Ullom, Appl. Phys. Lett. 97, 102504 (2010). https://doi.org/10.1063/1.3486477 A. Wessels, K. Morgan, D.T. Becker, Jo.D. Gard, G.C. Hilton, J.A.B. Mates, C.D. Reintsema, D.R. Schmidt, D.S. Swetz, J.N. Ullom, L.R. Vale, D.A. Bennett, arXiv:1907.11343 [cond-mat.supr-con]