High-Entropy-Alloy Binder for TiC-Based Cemented Carbide by SHS Method
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P., Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 2014, vol. 61, pp. 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001
Miracle, D.B. and Senkov, O.N., A critical review of high entropy alloys and related concepts, Acta Mater., 2017, vol. 122, pp. 448–511.
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B., Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 2004, vols. 375–377, pp. 213–218. https://doi.org/10.1016/j.msea.2003.10.257
Gludovatz, B., Honenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O., A fracture-resistant high-entropy alloy for cryogenic applications, Science, 2014, vol. 345, pp. 1153–1158.
Zhang, Z.J., Mao, M.M., Wang, J., Gludovatz, B., Zhang, Z., Mao, S.X., George, E.P., Yu, Q., and Ritchie, R.O., Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi, Nat. Commun., 2015, vol. 6, 10143.
Gali, A. and George, E.P., Tensile properties of high- and medium-entropy alloys, Intermetallics, 2013, vol. 39, pp. 74–78. https://doi.org/10.1016/j.intermet.2013.03.018
Otto, F., Dlouhy, A., Somsen, Ch., Bei, H., Eggeler, G., and George, E.P., The influence of temperature and microstructure on tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater., 2013, vol. 61, no. 15, pp. 5743–5755. https://doi.org/10.1016/j.actamat.2013.06.018
Kilmametov, A., Kulagin, R., Mazilkin, A., Seils, S., Boll, T., Heilmaier, M., and Hahn, H., High-pressure torsion driven mechanical alloying of CoCrFeMnNi high entropy alloy, Scr. Mater., 2019, vol. 158, pp. 29–33. https://doi.org/10.1016/j.scriptamat.2018.08.031
Zhu, C., Lu, Z.P., and Nieh, T.G., Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy, Acta Mater., 2013, vol. 61, no. 8, pp. 2993–3001. https://doi.org/10.1016/j.actamat.2013.01.059
Shahmir, H., He, J., Lu, Z., Kawasaki, M., and Langdona, T.G., Evidence for superplasticity in a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, Mater. Sci. Eng. A, 2017, vol. 685, pp. 342–348. https://doi.org/10.1016/j.msea.2017.01.016
Prusa, F., Senkova, A., Kucera, V., Capek, J., and Vojtech, D., Mater. Sci. Eng. A, 2018, vol. 734, pp. 341–352. https://doi.org/10.1016/j.msea.2018.08.014
Sun, S.J., Tian, Y.Z., Lin, H.R., Dong, X.G., Wang, Y.H., Zhang, Z.J., and Zhang, Z.F., Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure, Mater. Des., 2017, vol. 133, pp. 122–127. https://doi.org/10.1016/j.matdes.2017.07.054
Zhu, G., Liu, Y., and Ye, J., Fabrication and properties of Ti(C,N)-based cermets with multi-component AlCoCrFeNi high entropy alloys binder, Mater. Lett., 2013, vol. 113, pp. 80–82. https://doi.org/10.1016/j.matlet.2013.08.087
Chen, C.-S., Yang, C.-C., Chai, H.-Y., Yeh, J.-W., and Chau, J.L.H., Novel cermet material of WC/multi-element alloy, Int. J. Refract. Met. Hard Mater., 2014, vol. 43, pp. 200–204.
Kochetov, N.A., Rogachev, A.S., Shchukin, A.S., Vadchenko, S.G., and Kovalev, I.D., Mechanical alloying with partial amorphization of Fe–Cr–Co–Ni–Mn multicomponent powder mixture and its spark plasma sintering for compact high-entropy material production, Izv. Vyssh. Uchebn. Zaved., Poroshk. Metall. Funkts. Pokrytiya, 2018, no. 2, pp. 35–42. https://doi.org/10.17073/1997-308X-2018-2-35-42
Merzhanov, A.G., Self-propagating high-temperature synthesis: Twenty years of search and findings, in Combustion and Plasma Synthesis of High-Temperature Materials, Munir, Z.A., Ed., New York: VCH, 1990, pp. 1–53.
Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Combustion synthesis of advanced materials: Principles and applications, in Advances in Chemical Engineering, Wei, J., Ed., San Diego–London–Boston–New York–Sydney–Tokyo–Toronto: Academic Press, 1998, vol. 24, pp. 79–226.