High-Entropy-Alloy Binder for TiC-Based Cemented Carbide by SHS Method

А. С. Рогачев1, A. N. Gryadunov1, Н. А. Кочетов1, A. S. Schukin1, F. Baras2, O. Politano2
1Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences (ISMAN), Moscow, Russia
2UMR 6303 CNRS–Université Bourgogne Franche-Comté, Dijon Cedex, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P., Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 2014, vol. 61, pp. 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001

Miracle, D.B. and Senkov, O.N., A critical review of high entropy alloys and related concepts, Acta Mater., 2017, vol. 122, pp. 448–511.

Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B., Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 2004, vols. 375–377, pp. 213–218. https://doi.org/10.1016/j.msea.2003.10.257

Gludovatz, B., Honenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O., A fracture-resistant high-entropy alloy for cryogenic applications, Science, 2014, vol. 345, pp. 1153–1158.

Zhang, Z.J., Mao, M.M., Wang, J., Gludovatz, B., Zhang, Z., Mao, S.X., George, E.P., Yu, Q., and Ritchie, R.O., Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi, Nat. Commun., 2015, vol. 6, 10143.

Gali, A. and George, E.P., Tensile properties of high- and medium-entropy alloys, Intermetallics, 2013, vol. 39, pp. 74–78. https://doi.org/10.1016/j.intermet.2013.03.018

Otto, F., Dlouhy, A., Somsen, Ch., Bei, H., Eggeler, G., and George, E.P., The influence of temperature and microstructure on tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater., 2013, vol. 61, no. 15, pp. 5743–5755. https://doi.org/10.1016/j.actamat.2013.06.018

Kilmametov, A., Kulagin, R., Mazilkin, A., Seils, S., Boll, T., Heilmaier, M., and Hahn, H., High-pressure torsion driven mechanical alloying of CoCrFeMnNi high entropy alloy, Scr. Mater., 2019, vol. 158, pp. 29–33. https://doi.org/10.1016/j.scriptamat.2018.08.031

Zhu, C., Lu, Z.P., and Nieh, T.G., Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy, Acta Mater., 2013, vol. 61, no. 8, pp. 2993–3001. https://doi.org/10.1016/j.actamat.2013.01.059

Shahmir, H., He, J., Lu, Z., Kawasaki, M., and Langdona, T.G., Evidence for superplasticity in a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, Mater. Sci. Eng. A, 2017, vol. 685, pp. 342–348. https://doi.org/10.1016/j.msea.2017.01.016

Prusa, F., Senkova, A., Kucera, V., Capek, J., and Vojtech, D., Mater. Sci. Eng. A, 2018, vol. 734, pp. 341–352. https://doi.org/10.1016/j.msea.2018.08.014

Sun, S.J., Tian, Y.Z., Lin, H.R., Dong, X.G., Wang, Y.H., Zhang, Z.J., and Zhang, Z.F., Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure, Mater. Des., 2017, vol. 133, pp. 122–127. https://doi.org/10.1016/j.matdes.2017.07.054

Zhu, G., Liu, Y., and Ye, J., Fabrication and properties of Ti(C,N)-based cermets with multi-component AlCoCrFeNi high entropy alloys binder, Mater. Lett., 2013, vol. 113, pp. 80–82. https://doi.org/10.1016/j.matlet.2013.08.087

Chen, C.-S., Yang, C.-C., Chai, H.-Y., Yeh, J.-W., and Chau, J.L.H., Novel cermet material of WC/multi-element alloy, Int. J. Refract. Met. Hard Mater., 2014, vol. 43, pp. 200–204.

Kochetov, N.A., Rogachev, A.S., Shchukin, A.S., Vadchenko, S.G., and Kovalev, I.D., Mechanical alloying with partial amorphization of Fe–Cr–Co–Ni–Mn multicomponent powder mixture and its spark plasma sintering for compact high-entropy material production, Izv. Vyssh. Uchebn. Zaved., Poroshk. Metall. Funkts. Pokrytiya, 2018, no. 2, pp. 35–42. https://doi.org/10.17073/1997-308X-2018-2-35-42

Merzhanov, A.G., Self-propagating high-temperature synthesis: Twenty years of search and findings, in Combustion and Plasma Synthesis of High-Temperature Materials, Munir, Z.A., Ed., New York: VCH, 1990, pp. 1–53.

Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Combustion synthesis of advanced materials: Principles and applications, in Advances in Chemical Engineering, Wei, J., Ed., San Diego–London–Boston–New York–Sydney–Tokyo–Toronto: Academic Press, 1998, vol. 24, pp. 79–226.