Sự tán xạ Higgs–Higgs và sự (không) tồn tại của Higgsonium

The European Physical Journal C - Tập 83 - Trang 1-14 - 2023
Vanamali Shastry1, Francesco Giacosa1,2
1Institute of Physics, Jan Kochanowski University, Kielce, Poland
2Institute for Theoretical Physics, Johann Wolfgang Goethe-University, Frankfurt, Germany

Tóm tắt

Chúng tôi nghiên cứu quá trình tán xạ Higgs–Higgs và khả năng xuất hiện của trạng thái bị liên kết Higgs–Higgs (Higgsonium) trong bất kỳ tiềm năng Higgs nào có giá trị kỳ vọng chân không và bậc hai tương ứng khớp với các giá trị trong Mô hình chuẩn (SM). Từ biên độ tán xạ Higgs–Higgs ở cấp độ cây, chúng tôi xây dựng biên độ chuẩn hóa sử dụng hai phương pháp chuẩn hóa khác nhau (phương pháp nổi tiếng trên vỏ và phương pháp N/D). Chúng tôi tái hiện kết quả đã biết rằng không có trạng thái Higgsonium trong SM và, thêm vào đó, chúng tôi xác định chiều dài tán xạ SM theo sóng S-, D- và G-, cả ở cấp độ cây lẫn khi chuẩn hóa. Trong quá trình này, chúng tôi tinh chỉnh các kết quả trước đó bằng cách kiểm tra sự hội tụ của phương pháp N/D. Tiếp theo, chúng tôi mở rộng tính toán cho các tiềm năng không thuộc SM và điều tra những điều kiện nào cho phép hình thành một trạng thái bị liên kết gần ngưỡng Higgs–Higgs. Bằng cách này, giả định rằng không tồn tại Higgsonium, đặt ra một số giới hạn nhất định về các giá trị của tham số tự tương tác, bổ sung cho những giới hạn đã được thiết lập bởi điều kiện ổn định chân không.

Từ khóa

#Higgs #Higgsonium #tán xạ #Mô hình chuẩn #tự tương tác #trạng thái bị liên kết

Tài liệu tham khảo

Y.S. Amhis et al. [HFLAV], Averages of b-hadron, c-hadron, and \(\tau \)-lepton properties as of 2018. Eur. Phys. J. C 813, 226 (2021). https://doi.org/10.1140/epjc/s10052-020-8156-7. arXiv:1909.12524 [hep-ex] M. Huschle et al. [Belle], Measurement of the branching ratio of \({\bar{B}} \rightarrow D^{(\ast )} \tau ^- {\bar{\nu }}_\tau \) relative to \({\bar{B}} \rightarrow D^{(\ast )} \ell ^- {\bar{\nu }}_\ell \) decays with hadronic tagging at Belle. Phys. Rev. D 927, 072014 (2015). https://doi.org/10.1103/PhysRevD.92.072014. arXiv:1507.03233 [hep-ex] J.A. Bailey et al. [MILC], \({{\rm B}} \rightarrow {{\rm D}}{\ell }{\nu }\) form factors at nonzero recoil and |V\(_{cb}\)| from 2+1-flavor lattice QCD. Phys. Rev. D 923, 034506 (2015). https://doi.org/10.1103/PhysRevD.92.034506. arXiv:1503.07237 [hep-lat] J.P. Lees et al. [BaBar], Measurement of an excess of \({\bar{B}} \rightarrow D^{(*)}\tau ^- {\bar{\nu }}_\tau \) decays and implications for charged Higgs bosons. Phys. Rev. D 887, 072012 (2013). https://doi.org/10.1103/PhysRevD.88.072012. arXiv:1303.0571 [hep-ex] H. Na et al. [HPQCD], \(B \rightarrow D l \nu \) form factors at nonzero recoil and extraction of \(|V_{cb}|\). Phys. Rev. D 92(5), 054510 [erratum: Phys. Rev. D 93 (2016) no.11, 119906] (2015). https://doi.org/10.1103/PhysRevD.93.119906. arXiv:1505.03925 [hep-lat] G. Aad et al. [ATLAS], Search for resonant pair production of Higgs bosons in the \(b{\bar{b}}b{\bar{b}}\) final state using \(pp\) collisions at \(\sqrt{s}\) = 13 TeV with the ATLAS detector. Phys. Rev. D 1059, 092002 (2022). https://doi.org/10.1103/PhysRevD.105.092002. arXiv:2202.07288 [hep-ex] G. Aad et al. [ATLAS], Observation of \(WWW\) production in \(pp\) collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector. Phys. Rev. Lett. 1296, 061803 (2022). https://doi.org/10.1103/PhysRevLett.129.061803. arXiv:2201.13045 [hep-ex] F. Jegerlehner, A. Nyffeler, The muon g-2. Phys. Rep. 477, 1–110 (2009). https://doi.org/10.1016/j.physrep.2009.04.003. arXiv:0902.3360 [hep-ph] M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon \(g-2\) and \({\alpha (m_Z^2)}\) using newest hadronic cross-section data. Eur. Phys. J. C 7712, 827 (2017). https://doi.org/10.1140/epjc/s10052-017-5161-6. arXiv:1706.09436 [hep-ph] T. Albahri et al. [Muon g-2], Measurement of the anomalous precession frequency of the muon in the Fermilab Muon \(g-2\) Experiment. Phys. Rev. D 1037, 072002 (2021). https://doi.org/10.1103/PhysRevD.103.072002. arXiv:2104.03247 [hep-ex] T. Aaltonen et al. [CDF], High-precision measurement of the W boson mass with the CDF II detector. Science 376(6589), 170–176 (2022). https://doi.org/10.1126/science.abk1781 S. Dawson, C. Englert, T. Plehn, Higgs Physics: it ain’t over till it’s over. Phys. Rep. 816, 1–85 (2019). https://doi.org/10.1016/j.physrep.2019.05.001. arXiv:1808.01324 [hep-ph] R.L. Workman [Particle Data Group], Review of Particle Physics. PTEP 2022, 083C01 (2022). https://doi.org/10.1093/ptep/ptac097 P.H. Frampton, Vacuum instability and Higgs scalar mass. Phys. Rev. Lett. 37 (1976), 1378 [Erratum: Phys. Rev. Lett. 37 (1976), 1716] https://doi.org/10.1103/PhysRevLett.37.1378 A.D. Linde, On the vacuum instability and the Higgs meson mass. Phys. Lett. B 70, 306–308 (1977). https://doi.org/10.1016/0370-2693(77)90664-5 M. Sher, Electroweak Higgs potentials and vacuum stability. Phys. Rep. 179, 273–418 (1989). https://doi.org/10.1016/0370-1573(89)90061-6 A. Kobakhidze, A. Spencer-Smith, Electroweak vacuum (in)stability in an inflationary universe. Phys. Lett. B 722, 130–134 (2013). https://doi.org/10.1016/j.physletb.2013.04.013. arXiv:1301.2846 [hep-ph] A. Andreassen, W. Frost, M.D. Schwartz, Scale Invariant Instantons and the complete lifetime of the Standard Model. Phys. Rev. D 975, 056006 (2018). https://doi.org/10.1103/PhysRevD.97.056006. arXiv:1707.08124 [hep-ph] P. Agrawal, D. Saha, L.X. Xu, J.H. Yu, C.P. Yuan, Determining the shape of the Higgs potential at future colliders. Phys. Rev. D 1017, 075023 (2020). https://doi.org/10.1103/PhysRevD.101.075023. arXiv:1907.02078 [hep-ph] P.Q. Hung, Vacuum instability and new constraints on fermion masses. Phys. Rev. Lett. 42, 873 (1979). https://doi.org/10.1103/PhysRevLett.42.873 M. Sher, Precise vacuum stability bound in the Standard Model. Phys. Lett. B 317, 159–163 (1993). https://doi.org/10.1016/0370-2693(93)91586-C. arXiv:hep-ph/9307342 J.A. Casas, J.R. Espinosa, M. Quiros, Standard model stability bounds for new physics within LHC reach. Phys. Lett. B 382, 374–382 (1996). https://doi.org/10.1016/0370-2693(96)00682-X. arXiv:hep-ph/9603227 G. Isidori, G. Ridolfi, A. Strumia, On the metastability of the standard model vacuum. Nucl. Phys. B 609, 387–409 (2001). https://doi.org/10.1016/S0550-3213(01)00302-9. arXiv:hep-ph/0104016 J. Ellis, J.R. Espinosa, G.F. Giudice, A. Hoecker, A. Riotto, The probable fate of the Standard Model. Phys. Lett. B 679, 369–375 (2009). https://doi.org/10.1016/j.physletb.2009.07.054. arXiv:0906.0954 [hep-ph] J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto, A. Strumia, Higgs mass implications on the stability of the electroweak vacuum. Phys. Lett. B 709, 222–228 (2012). https://doi.org/10.1016/j.physletb.2012.02.013. arXiv:1112.3022 [hep-ph] O. Lebedev, On stability of the electroweak vacuum and the Higgs portal. Eur. Phys. J. C 72, 2058 (2012). https://doi.org/10.1140/epjc/s10052-012-2058-2. arXiv:1203.0156 [hep-ph] G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Strumia, Higgs mass and vacuum stability in the Standard Model at NNLO. JHEP 08, 098 (2012). https://doi.org/10.1007/JHEP08(2012)098. arXiv:1205.6497 [hep-ph] V. Branchina, E. Messina, Stability, Higgs boson mass and new physics. Phys. Rev. Lett. 111, 241801 (2013). https://doi.org/10.1103/PhysRevLett.111.241801. arXiv:1307.5193 [hep-ph] D. Buttazzo, G. Degrassi, P.P. Giardino, G.F. Giudice, F. Sala, A. Salvio, A. Strumia, Investigating the near-criticality of the Higgs boson. JHEP 12, 089 (2013). https://doi.org/10.1007/JHEP12(2013)089. arXiv:1307.3536 [hep-ph] A.V. Bednyakov, B.A. Kniehl, A.F. Pikelner, O.L. Veretin, Stability of the electroweak vacuum: gauge independence and advanced precision. Phys. Rev. Lett. 11520, 201802 (2015). https://doi.org/10.1103/PhysRevLett.115.201802. arXiv:1507.08833 [hep-ph] S. Chigusa, T. Moroi, Y. Shoji, State-of-the-art calculation of the decay rate of electroweak vacuum in the Standard Model. Phys. Rev. Lett. 11921, 211801 (2017). https://doi.org/10.1103/PhysRevLett.119.211801. arXiv:1707.09301 [hep-ph] S. Chigusa, T. Moroi, Y. Shoji, Decay rate of electroweak vacuum in the Standard Model and beyond. Phys. Rev. D 9711, 116012 (2018). https://doi.org/10.1103/PhysRevD.97.116012. arXiv:1803.03902 [hep-ph] A. Maas, Bound-state/elementary-particle duality in the Higgs sector and the case for an excited ‘Higgs’ within the standard model. Mod. Phys. Lett. A 28, 1350103 (2013). https://doi.org/10.1142/S0217732313501034. arXiv:1205.6625 [hep-lat] A. Maas, Brout–Englert–Higgs physics: from foundations to phenomenology. Prog. Part. Nucl. Phys. 106, 132–209 (2019). https://doi.org/10.1016/j.ppnp.2019.02.003. arXiv:1712.04721 [hep-ph] C.T. Hill, Is the Higgs boson associated with Coleman–Weinberg dynamical symmetry breaking? Phys. Rev. D 897, 073003 (2014). https://doi.org/10.1103/PhysRevD.89.073003. arXiv:1401.4185 [hep-ph] D.B. Kaplan, H. Georgi, SU(2) x U(1) breaking by vacuum misalignment. Phys. Lett. B 136, 183–186 (1984). https://doi.org/10.1016/0370-2693(84)91177-8 D.B. Kaplan, H. Georgi, S. Dimopoulos, Composite Higgs scalars. Phys. Lett. B 136, 187–190 (1984). https://doi.org/10.1016/0370-2693(84)91178-X J. Galloway, M.A. Luty, Y. Tsai, Y. Zhao, Induced electroweak symmetry breaking and supersymmetric naturalness. Phys. Rev. D 897, 075003 (2014). https://doi.org/10.1103/PhysRevD.89.075003. arXiv:1306.6354 [hep-ph] S. Chang, J. Galloway, M. Luty, E. Salvioni, Y. Tsai, Phenomenology of induced electroweak symmetry breaking. JHEP 03, 017 (2015). https://doi.org/10.1007/JHEP03(2015)017. arXiv:1411.6023 [hep-ph] V. Silveira, A. Zee, Scalar phantoms. Phys. Lett. B 161, 136–140 (1985). https://doi.org/10.1016/0370-2693(85)90624-0 D. O’Connell, M.J. Ramsey-Musolf, M.B. Wise, Minimal extension of the Standard Model scalar sector. Phys. Rev. D 75, 037701 (2007). https://doi.org/10.1103/PhysRevD.75.037701. arXiv:hep-ph/0611014 M. Bowen, Y. Cui, J.D. Wells, Narrow trans-TeV Higgs bosons and H—\(>\) hh decays: two LHC search paths for a hidden sector Higgs boson. JHEP 03, 036 (2007). https://doi.org/10.1088/1126-6708/2007/03/036. arXiv:hep-ph/0701035 J.R. Espinosa, T. Konstandin, F. Riva, Strong electroweak phase transitions in the Standard Model with a singlet. Nucl. Phys. B 854, 592–630 (2012). https://doi.org/10.1016/j.nuclphysb.2011.09.010. arXiv:1107.5441 [hep-ph] G.M. Pruna, T. Robens, Higgs singlet extension parameter space in the light of the LHC discovery. Phys. Rev. D 8811, 115012 (2013). https://doi.org/10.1103/PhysRevD.88.115012. arXiv:1303.1150 [hep-ph] H.E. Haber, G.L. Kane, T. Sterling, The fermion mass scale and possible effects of Higgs bosons on experimental observables. Nucl. Phys. B 161, 493–532 (1979). https://doi.org/10.1016/0550-3213(79)90225-6 J.F. Gunion, H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit. Phys. Rev. D 67, 075019 (2003). https://doi.org/10.1103/PhysRevD.67.075019. arXiv:hep-ph/0207010 G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher, J.P. Silva, Theory and phenomenology of two-Higgs-doublet models. Phys. Rep. 516, 1–102 (2012). https://doi.org/10.1016/j.physrep.2012.02.002. arXiv:1106.0034 [hep-ph] J. F. Gunion, E. Haber, Higgs bosons in supersymmetric models. 1. Nucl. Phys. B 272, 1 [erratum: Nucl. Phys. B 402 (1993), 567-569] (1986). https://doi.org/10.1016/0550-3213(86)90340-8 J.F. Gunion, H.E. Haber, Higgs bosons in supersymmetric models. 2. Implications for Phenomenology. Nucl. Phys. B 278, 449 [erratum: Nucl. Phys. B 402 (1993), 569-569] (1986).https://doi.org/10.1016/0550-3213(86)90050-7 D. López-Val, T. Plehn, M. Rauch, Measuring extended Higgs sectors as a consistent free couplings model. JHEP 10, 134 (2013). https://doi.org/10.1007/JHEP10(2013)134. arXiv:1308.1979 [hep-ph] C.Y. Chen, S. Dawson, I.M. Lewis, Exploring resonant di-Higgs boson production in the Higgs singlet model. Phys. Rev. D 913, 035015 (2015). https://doi.org/10.1103/PhysRevD.91.035015. arXiv:1410.5488 [hep-ph] M. Carena, I. Low, N.R. Shah, C.E.M. Wagner, Impersonating the Standard Model Higgs boson: alignment without decoupling. JHEP 04, 015 (2014). https://doi.org/10.1007/JHEP04(2014)015. arXiv:1310.2248 [hep-ph] P.S. Bhupal Dev, A. Pilaftsis, Maximally symmetric two Higgs doublet model with natural Standard Model alignment. JHEP 12, 024 [erratum: JHEP 11 (2015), 147] (2014). https://doi.org/10.1007/JHEP12(2014)024. arXiv:1408.3405 [hep-ph] G. Aad et al. [ATLAS], Search for an additional, heavy Higgs boson in the \(H\rightarrow ZZ\) decay channel at \(\sqrt{s} = 8\; \text{TeV} \) in \(pp\) collision data with the ATLAS detector. Eur. Phys. J. C 761, 45 (2016). https://doi.org/10.1140/epjc/s10052-015-3820-z. arXiv:1507.05930 [hep-ex] M. Aaboud et al. [ATLAS], Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb\(^{-1}\) of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector. JHEP 01, 055 (2018). https://doi.org/10.1007/JHEP01(2018)055. arXiv:1709.07242 [hep-ex] A.M. Sirunyan et al. [CMS], Search for additional neutral MSSM Higgs bosons in the \(\tau \tau \) final state in proton-proton collisions at \(\sqrt{s}=\) 13 TeV. JHEP 09, 007 (2018). https://doi.org/10.1007/JHEP09(2018)007. arXiv:1803.06553 [hep-ex] U. Baur, T. Plehn, D.L. Rainwater, Phys. Rev. D 69, 053004 (2004). https://doi.org/10.1103/PhysRevD.69.053004. arXiv:hep-ph/0310056 M.J. Dolan, C. Englert, M. Spannowsky, Higgs self-coupling measurements at the LHC. JHEP 10, 112 (2012). https://doi.org/10.1007/JHEP10(2012)112. arXiv:1206.5001 [hep-ph] F. Goertz, A. Papaefstathiou, L.L. Yang, J. Zurita, Higgs boson self-coupling measurements using ratios of cross sections. JHEP 06, 016 (2013). https://doi.org/10.1007/JHEP06(2013)016. arXiv:1301.3492 [hep-ph] J. Baglio, A. Djouadi, R. Gröber, M.M. Mühlleitner, J. Quevillon, M. Spira, The measurement of the Higgs self-coupling at the LHC: theoretical status. JHEP 04, 151 (2013). https://doi.org/10.1007/JHEP04(2013)151. arXiv:1212.5581 [hep-ph] M. McCullough, An indirect model-dependent probe of the Higgs self-coupling. Phys. Rev. D 90(1), 015001 [erratum: Phys. Rev. D 92 (2015) no.3, 039903] (2014). https://doi.org/10.1103/PhysRevD.90.015001. arXiv:1312.3322 [hep-ph] Q.H. Cao, Y. Liu, B. Yan, Measuring trilinear Higgs coupling in WHH and ZHH productions at the high-luminosity LHC. Phys. Rev. D 957, 073006 (2017). https://doi.org/10.1103/PhysRevD.95.073006. arXiv:1511.03311 [hep-ph] Q.H. Cao, G. Li, B. Yan, D.M. Zhang, H. Zhang, Double Higgs production at the 14 TeV LHC and a 100 TeV \(pp\) collider. Phys. Rev. D 969, 095031 (2017). https://doi.org/10.1103/PhysRevD.96.095031. arXiv:1611.09336 [hep-ph] S. Di Vita, C. Grojean, G. Panico, M. Riembau, T. Vantalon, A global view on the Higgs self-coupling. JHEP 09, 069 (2017). https://doi.org/10.1007/JHEP09(2017)069. arXiv:1704.01953 [hep-ph] G. Degrassi, B. Di Micco, P.P. Giardino, E. Rossi, Higgs boson self-coupling constraints from single Higgs, double Higgs and Electroweak measurements. Phys. Lett. B 817, 136307 (2021). https://doi.org/10.1016/j.physletb.2021.136307. arXiv:2102.07651 [hep-ph] M. Chiesa, F. Maltoni, L. Mantani, B. Mele, F. Piccinini, X. Zhao, Measuring the quartic Higgs self-coupling at a multi-TeV muon collider. JHEP 09, 098 (2020). https://doi.org/10.1007/JHEP09(2020)098. arXiv:2003.13628 [hep-ph] J. Park, J. Chang, K. Cheung, J.S. Lee, Measuring the trilinear Higgs boson self-coupling at the 100 TeV hadron collider via multivariate analysis. Phys. Rev. D 1027, 073002 (2020). https://doi.org/10.1103/PhysRevD.102.073002. arXiv:2003.12281 [hep-ph] L. Alasfar, J. de Blas, R. Gröber, Higgs probes of top quark contact interactions and their interplay with the Higgs self-coupling. JHEP 05, 111 (2022). https://doi.org/10.1007/JHEP05(2022)111. arXiv:2202.02333 [hep-ph] S. Dawson, P. Meade, I. Ojalvo, C. Vernieri, S. Adhikari, F. Abu-Ajamieh, A. Alberta, H. Bahl, R. Barman, M. Basso et al., Report of the topical group on Higgs physics for snowmass 2021: the case for precision Higgs physics. arXiv:2209.07510 [hep-ph] F. Abu-Ajamieh, S. Chang, M. Chen, D. Liu, M.A. Luty, Snowmass 2021 white paper: Higgs coupling sensitivities and model-independent bounds on the scale of new physics. arXiv:2203.09512 [hep-ph] A. Apresyan, D. Diaz, J. Duarte, S. Ganguly, R. Kansal, N. Lu, C.M. Suarez, S. Mukherjee, C. Pena, B. Sheldon et al., Improving di-Higgs sensitivity at future colliders in hadronic final states with machine learning. arXiv:2203.07353 [hep-ph] G. Aad et al. [ATLAS], Combination of searches for Higgs boson pairs in \(pp\) collisions at \(\sqrt{s} = \)13 TeV with the ATLAS detector. Phys. Lett. B 800, 135103 (2020). https://doi.org/10.1016/j.physletb.2019.135103. arXiv:1906.02025 [hep-ex] G. Aad et al. [ATLAS], Search for Higgs boson pair production in the two bottom quarks plus two photons final state in \(pp\) collisions at \(\sqrt{s}=13\) TeV with the ATLAS detector. Phys. Rev. D 1065, 052001 (2022). https://doi.org/10.1103/PhysRevD.106.052001. arXiv:2112.11876 [hep-ex] [ATLAS], Search for resonant and non-resonant Higgs boson pair production in the \(b{\bar{b}}\tau ^+\tau ^-\) decay channel using 13 TeV \(pp\) collision data from the ATLAS detector. arXiv:2209.10910 [hep-ex] [ATLAS], Search for nonresonant pair production of Higgs bosons in the \(b{\bar{b}}b{\bar{b}}\) final state in \(pp\) collisions at \(\sqrt{s}= 13\) TeV with the ATLAS detector. arXiv:2301.03212 [hep-ex] G. Degrassi, P.P. Giardino, F. Maltoni, D. Pagani, Probing the Higgs self coupling via single Higgs production at the LHC. JHEP 12, 080 (2016). https://doi.org/10.1007/JHEP12(2016)080. arXiv:1607.04251 [hep-ph] F. Maltoni, D. Pagani, A. Shivaji, X. Zhao, Trilinear Higgs coupling determination via single-Higgs differential measurements at the LHC. Eur. Phys. J. C 7712, 887 (2017). https://doi.org/10.1140/epjc/s10052-017-5410-8. arXiv:1709.08649 [hep-ph] [ATLAS], A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery. Nature 607(7917), 52–59 [erratum: Nature 612 (2022) no.7941, E24] (2022). https://doi.org/10.1038/s41586-022-04893-w. arXiv:2207.00092 [hep-ex] [ATLAS], Constraining the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using \(pp\) collisions at \(\sqrt{s}=13\) TeV. arXiv:2211.01216 [hep-ex] A. Tumasyan et al. [CMS], A portrait of the Higgs boson by the CMS experiment ten years after the discovery. Nature 607(7917), 60–68 (2022). https://doi.org/10.1038/s41586-022-04892-x. arXiv:2207.00043 [hep-ex] S. Homiller, P. Meade, Measurement of the triple Higgs coupling at a HE-LHC. JHEP 03, 055 (2019). https://doi.org/10.1007/JHEP03(2019)055. arXiv:1811.02572 [hep-ph] M. Cepeda, S. Gori, P. Ilten, M. Kado, R. Abdul Khalek, A. Aboubrahim, J. Alimena, S. Alioli, A. Alves, A. Alves et al., Report from working group 2: Higgs physics at the HL-LHC and HE-LHC. CERN Yellow Rep. Monogr. 7, 221–584 (2019). arXiv:1902.00134 [hep-ph]https://doi.org/10.23731/CYRM-2019-007.221 F. Millet, L. Tavian, U. Cardella, O. Amstutz, P. Selva, A. Kuendig, Preliminary conceptual design of FCC-hh cryoplants: Linde evaluation. IOP Conf. Ser. Mater. Sci. Eng. 5021, 012131 (2019). https://doi.org/10.1088/1757-899X/502/1/012131 K. Black, T. Bose, S. Dasu, H. Jia, S. Lomte, C. Vuosalo, I. Ojalvo, T. Holmes, L. Lee, M. Swiatlowski et al., Prospects for the measurement of the Standard Model Higgs pair production at the muon colliders. arXiv:2203.08874 [hep-ex] A. Taliercio, P. Mastrapasqua, C. Caputo, P. Vischia, N. De Filippis, P. Bhat, Higgs self couplings measurements at future proton–proton colliders: a snowmass white paper. arXiv:2203.08042 [hep-ex] J.A. Bagger, B.C. Barish, S. Belomestnykh, P.C. Bhat, J.E. Brau, M. Demarteau, D. Denisov, S.C. Eno, C.G.R. Geddes, P.D. Grannis et al., Higgs factory considerations. arXiv:2203.06164 [hep-ex] R.N. Cahn, M. Suzuki, The Higgs-Higgs bound state. Phys. Lett. B 134, 115–119 (1984). https://doi.org/10.1016/0370-2693(84)90997-3 A.P. Contogouris, N. Mebarki, D. Atwood, H. Tanaka, Bootstrapping a heavy Higgs. Mod. Phys. Lett. A 3, 295–301 (1988). https://doi.org/10.1142/S0217732388000350 G. Rupp, Heavy Higgs bound state and bootstrap. Phys. Lett. B 288, 99–103 (1992). https://doi.org/10.1016/0370-2693(92)91961-8 L. Di Leo, J.W. Darewych, Bound states in the Higgs model. Phys. Rev. D 49, 1659–1662 (1994). https://doi.org/10.1103/PhysRevD.49.1659 F. Siringo, A variational study of bound states in the Higgs model. Phys. Rev. D 62, 116009 (2000). https://doi.org/10.1103/PhysRevD.62.116009. arXiv:hep-ph/0008030 J.A. Grifols, Higgsonium. Phys. Lett. B 264, 149–153 (1991). https://doi.org/10.1016/0370-2693(91)90719-7 J. Clua, J.A. Grifols, Bound states of scalar bosons in extensions of the standard model. Z. Phys. C 72, 677–687 (1996). https://doi.org/10.1007/s00288960720677. arXiv:hep-ph/9505287 B. Grinstein, M. Trott, A Higgs–Higgs bound state due to new physics at a TeV. Phys. Rev. D 76, 073002 (2007). https://doi.org/10.1103/PhysRevD.76.073002. arXiv:0704.1505 [hep-ph] A. Biswas, Is Higgsium a possibility in 2HDMs? Nucl. Phys. B 951, 114885 (2020). https://doi.org/10.1016/j.nuclphysb.2019.114885. arXiv:1901.05325 [hep-ph] F. Giacosa, A. Pilloni, E. Trotti, Glueball–glueball scattering and the glueballonium. Eur. Phys. J. C 825, 487 (2022). https://doi.org/10.1140/epjc/s10052-022-10403-z. arXiv:2110.05582 [hep-ph] A.A. Petrov, Glueball molecules. arXiv:2204.11269 [hep-ph] A. Guerrieri, J. Penedones, P. Vieira, Where Is string theory in the space of scattering amplitudes? Phys. Rev. Lett. 1278, 081601 (2021). https://doi.org/10.1103/PhysRevLett.127.081601. arXiv:2102.02847 [hep-th] D. Blas, J. Martin Camalich, J.A. Oller, Scalar resonance in graviton-graviton scattering at high-energies: the graviball. Phys. Lett. B. 827, 136991 (2022). https://doi.org/10.1016/j.physletb.2022.136991. arXiv:2009.07817 [hep-th] F. Feng, Y. Jia, W.L. Sang, Short-range force between two Higgs bosons. Phys. Lett. B 735, 122–126 (2014). https://doi.org/10.1016/j.physletb.2014.06.024. arXiv:1312.1944 [hep-ph] W. Broniowski, F. Giacosa, V. Begun, Cancellation of the \(\sigma \) meson in thermal models. Phys. Rev. C 923, 034905 (2015). https://doi.org/10.1103/PhysRevC.92.034905. arXiv:1506.01260 [nucl-th] J.M. Butterworth, B.E. Cox, J.R. Forshaw, \(W W\) scattering at the CERN LHC. Phys. Rev. D 65, 096014 (2002). https://doi.org/10.1103/PhysRevD.65.096014. arXiv:hep-ph/0201098 A. Ballestrero, D. Buarque Franzosi, L. Oggero, Vector boson scattering at the LHC: counting experiments for unitarized models in a full six fermion approach. JHEP 03, 031 (2012). https://doi.org/10.1007/JHEP03(2012)031. arXiv:1112.1171 [hep-ph] J. Chang, K. Cheung, C.T. Lu, T.C. Yuan, WW scattering in the era of post-Higgs-boson discovery. Phys. Rev. D 87, 093005 (2013). https://doi.org/10.1103/PhysRevD.87.093005. arXiv:1303.6335 [hep-ph] S. Kanemura, Y. Okada, E. Senaha, C.P. Yuan, Higgs coupling constants as a probe of new physics. Phys. Rev. D 70, 115002 (2004). https://doi.org/10.1103/PhysRevD.70.115002. arXiv:hep-ph/0408364 E. Senaha, Radiative corrections to triple Higgs coupling and electroweak phase transition: beyond one-loop analysis. Phys. Rev. D 1005, 055034 (2019). https://doi.org/10.1103/PhysRevD.100.055034. arXiv:1811.00336 [hep-ph] J. Braathen, S. Kanemura, Leading two-loop corrections to the Higgs boson self-couplings in models with extended scalar sectors. Eur. Phys. J. C 803, 227 (2020). https://doi.org/10.1140/epjc/s10052-020-7723-2. arXiv:1911.11507 [hep-ph] J. Braathen, S. Kanemura, On two-loop corrections to the Higgs trilinear coupling in models with extended scalar sectors. Phys. Lett. B 796, 38–46 (2019). https://doi.org/10.1016/j.physletb.2019.07.021. arXiv:1903.05417 [hep-ph] A. Dobado, J.R. Pelaez, A Global fit of \(\pi \pi \) and \(\pi K\) elastic scattering in ChPT with dispersion relations. Phys. Rev. D 47, 4883–4888 (1993). https://doi.org/10.1103/PhysRevD.47.4883. arXiv:hep-ph/9301276 D. Gülmez, U.G. Meißner, J.A. Oller, A chiral covariant approach to \(\rho \rho \) scattering. Eur. Phys. J. C 777, 460 (2017). https://doi.org/10.1140/epjc/s10052-017-5018-z. arXiv:1611.00168 [hep-ph] J.A. Oller, E. Oset, J.R. Pelaez, Nonperturbative approach to effective chiral Lagrangians and meson interactions. Phys. Rev. Lett. 80, 3452–3455 (1998). https://doi.org/10.1103/PhysRevLett.80.3452. arXiv:hep-ph/9803242 J.A. Oller, Unitarization technics in hadron physics with historical remarks. Symmetry 127, 1114 (2020). https://doi.org/10.3390/sym12071114. arXiv:2005.14417 [hep-ph] M. Mai, U.G. Meißner, C. Urbach, Towards a theory of hadron resonances. Phys. Rep. 1001, 1–66 (2023). https://doi.org/10.1016/j.physrep.2022.11.005. arXiv:2206.01477 [hep-ph] D. Black, A.H. Fariborz, S. Moussa, S. Nasri, J. Schechter, Unitarized pseudoscalar meson scattering amplitudes in three flavor linear sigma models. Phys. Rev. D 64, 014031 (2001). https://doi.org/10.1103/PhysRevD.64.014031. arXiv:hep-ph/0012278 Z.H. Guo, L.Y. Xiao, H.Q. Zheng, Is the f0(600) meson a dynamically generated resonance? A lesson learned from the O(N) model and beyond. Int. J. Mod. Phys. A 22, 4603–4616 (2007). https://doi.org/10.1142/S0217751X0703710X. arXiv:hep-ph/0610434 J. Nieves, E. Ruiz Arriola, Bethe–Salpeter approach for meson meson scattering in chiral perturbation theory. Phys. Lett. B 455, 30–38 (1999). https://doi.org/10.1016/S0370-2693(99)00461-X. arXiv:nucl-th/9807035 J. Nieves, M. Pavon Valderrama, E. Ruiz Arriola, The Inverse amplitude method in pi pi scattering in chiral perturbation theory to two loops. Phys. Rev. D 65, 036002 (2002). https://doi.org/10.1103/PhysRevD.65.036002. arXiv:hep-ph/0109077 A. Salas-Bernárdez, F.J. Llanes-Estrada, J. Escudero-Pedrosa, J.A. Oller, Systematizing and addressing theory uncertainties of unitarization with the inverse amplitude method. SciPost Phys. 11(2), 020 (2021). https://doi.org/10.21468/SciPostPhys.11.2.020. arXiv:2010.13709 [hep-ph] R.L. Delgado, A. Dobado, F.J. Llanes-Estrada, Unitarity, analyticity, dispersion relations, and resonances in strongly interacting \(W_LW_L\), \(Z_LZ_L\), and hh scattering. Phys. Rev. D 917, 075017 (2015). https://doi.org/10.1103/PhysRevD.91.075017. arXiv:1502.04841 [hep-ph] J.R. Pelaez, From controversy to precision on the sigma meson: a review on the status of the non-ordinary \(f_0(500)\) resonance. Phys. Rep. 658, 1 (2016). https://doi.org/10.1016/j.physrep.2016.09.001. arXiv:1510.00653 [hep-ph] S. Samanta, F. Giacosa, QFT treatment of a bound state in a thermal gas. Phys. Rev. D 102, 116023 (2020). https://doi.org/10.1103/PhysRevD.102.116023. arXiv:2009.13547 [hep-ph] S. Samanta, F. Giacosa, Thermal role of bound states and resonances in scalar QFT. arXiv:2110.14752 [hep-ph] J.F. Donoghue, G. Menezes, Unitarity, stability and loops of unstable ghosts. Phys. Rev. D 10010, 105006 (2019). https://doi.org/10.1103/PhysRevD.100.105006. arXiv:1908.02416 [hep-th] E. Trotti, Emergence of ghost in once-subtracted on-shell unitarization in glueball–glueball scattering. arXiv:2211.12253 [hep-ph] W.R. Frazer, H.J. Yesian, Dynamical models based on unitarity and analyticity, in Summer School in Elementary Particle Physics: Theories of Strong Interactions at High Energies, edited by H.J. Yesian K. Hayashi, M. Hirayama, T. Muta, N. Seto, T. Shirafuji, Compositeness criteria of particles in quantum field theory and S-matrix theory. Fortsch. Phys. 15(10), 625–660 (1967). https://doi.org/10.1002/prop.19670151002 Z.Q. Ma, The Levinson theorem. J. Phys. A 39, R625–R659 (2006). https://doi.org/10.1088/0305-4470/39/48/R01 M. Consoli, L. Cosmai, A resonance of the Higgs field at 700 GeV and a new phenomenology. arXiv:2007.10837 [hep-ph]