Higgs Field—Fermion Coupling in the Tensor Dirac Theory

Springer Science and Business Media LLC - Tập 39 - Trang 2633-2665 - 2000
Frank Reifler1, Randall Morris1
1Government Electronic Systems 137-223, Lockheed Martin Corporation, Moorestown

Tóm tắt

In previous work, the Dirac and Einstein equations were unified in a tetradformulation of a Kaluza—Klein model which gives precisely the usualDirac—Einstein Lagrangian. In this model, the self-adjoint modes of the tetraddescribe gravity, whereas the isometric modes of the tetrad together with a scalarfield describe fermions. The tetrad Kaluza—Klein model is based on a constrainedYang—Mills formulation of the Dirac Lagrangian in which the bispinor field Ψis mapped to a set of SL(2, R) × U(1) gauge potentialsA K a and a complex scalarfield ρ. In this paper we generalize the map Ψ →(A K a , ρ) to multiplets of nbispinor fields representing a fermion multiplet as in standard electroweak theory.We show that the Lagrangian for bispinor multiplets used in the Standard Modelbecomes a constrained Yang—Mills Lagrangian, for which the Higgs fielddetermines a noninvariant gauge metric, thereby breaking the full gauge symmetry.

Tài liệu tham khảo

F. Reifler and R. Morris (1995). J. Math. Phys. 36, 1741–1752. F. Reifler and R. Morris (1996). J. Math. Phys. 37, 3630–3640. F. Reifler and R. Morris (1994). Int. J. Mod. Phys. A. 9, 5507–5515. F. Reifler and R. Morris (1992). Ann. Phys. 215, 264–276. F. Reifler and R. Morris (1999). J. Math. Phys. 40, 2680–2697. J. Keller and S. Rodriguez-Romo (1990). J. Math. Phys. 31, 2501–2510. F. Reifler and A. Vogt (1994). Commun. Partial Differential Eqns. 19, 1203–1215. F. Mandl and G. Shaw, Quantum Field Theory (Wiley, New York, 1986), pp. 82–90. K. Huang, Quarks, Leptons, and Gauge Fields (World Scientific, Singapore, 1992), pp. 80–85, 105-120. B. Thaller, The Dirac Equation (Springer-Verlag, Berlin, 1992). M. Carmeli, E. Leibowitz, and N. Nissani, Gravitation: SL(2, C) Gauge Theory and Conservation Laws (World Scientific, Singapore, 1990), pp. 21–27. R. Hammond (1995). Class. Quantum Grav. 12, 279–285. A. Ashtekar and R. Geroch (1974). Rep. Prog. Phys. 37, 1211–1256. B. DeWitt, Supermanifolds (Cambridge University Press, Cambridge, 1985), p. 230. A. Ashtekar, Lectures on Non-Perturbative Canonical Gravity (World Scientific, Singapore, 1991), pp. 41–65, 267-283. Y. Takahashi (1983). J. Math. Phys. 24, 1783–1790. M. P. DoCarmo, Riemannian Geometry (Birkhauser, Boston, 1992), pp. 40–41. G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974), pp. 485–510. F. Reifler and R. Morris, In Workshop on Harmonic Oscillators, D. Han, Y. S. Kim, and W. W. Zachary, eds. (NASA, 1993), pp. 289–294. F. R. Harvey, Spinors and Calibrations (Academic Press, Boston, 1990), p. 171.